|mpatient Perl

version: 29 April 2004
Copyright 2004 Greg London

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of thelicenseisincluded in the section entitled "GNU Free
Documentation License".

For more information, or for the latest version of thiswork, go to:
http://www.greglondon.com

This document was created using OpenOffice version 1.1.0
(which exports directly to PDF)
http://www.openoffice.org

running RedHat Linux
http://www.redhat.com

on ax86 machine from
http://www.penguincomputing.com

1of 138

Tabl e of Contents

1 The Inpatient Introduction to Perl.......... 6
1.1 The history of perl in 100 words or less............. 6
1.2 Basic Formatting for this Docunent................... 6
1.3 Do You Have Perl Installed........... 7
1.4 Your First Perl Script, EVER 7
1.5 Default Script Header............ 8
1.6 Free Reference Material.......... 9
1.7 Cheap Reference Material, 9
1.8 Acronyns and TerirB.o e e 9

2 S Or AgE. . .ttt 11
2.1 Scal ars. e 11

2.1.1 Scalar StrinNgsS.o 12
2.1.1.1 String Literals..........., 12
2.1.1.2 Single quotes versus Double quotes.......... 12
2.1.1.3 chonp. ... 13
2.1.1.4 concatenation. 13
2.1.1.5 repetition........... .., 13
2.1.1.6 lenath.......... 13
2.10.0.7 sUbStLT 13
2.10.1.8 split....... . 14
2.1.1.9 i0|n .. 14
2.0, 0,00 AW - o e e e 14

2.1.2 Scal ar Nurrbers 15
2.1.2.1 Nuneric Literals......... 15
2.1.2.2 Nuneric Functions. 15
2.1.2.3 abs. e, 15
2.0.2.4 iNt. e, 15
2.1.2.5 trigononetry (sin,cos,tan).................. 16
2.1.2.6 exponentiatli oOn., 16
2.0. 2.7 SArL e 16
2.1.2.8 natural logarithnms(exp,log)................. 17
2.1.2.9 random nunbers (rand, srand)................ 17

2.1.3 Converting Between Strings and Nunbers.......... 18
2.1.3.1 Strindify....... ... 18

2.1.3.1.1 sprintf...... 19
2.1.3.2 NUM FV. .ot 19
2.1.3. 2.1 OCt. ... 19
2.1.3.2.2 NeX. .ot 20

2.1.4 Undefined and Uninitialized Scalars............. 20

2.1.5 Bool €ans. 21
2.1.5.1 FALSE. e, 22
2.1.5.2 TRUE. e, 22
2.1.5.3 Conparat Or S. . . v vt e e 23
2.1.5.4 Logical Operators.uuuiiniiin. 23

2.1.5.4.1 Default Values........... 24
2.1.5.4.2 Flow Control 25
2.1.5.4.3 Precedence., 25
2.1.5.4.4 Assignnent Precedence................... 25

2 of 138

2.1.5.4.5 Flow Control Precedence................. 25

2.1.6 Ref €rences. 26
2.1.7 Filehandl es. e, 27
2.1.8 Scalar RevieW. 27
2. 2 AL AYS. .t 27
2.2.1 scalar (@rray) it 29
2.2 push(@rray, LIST)........ 29

2 2.3 POP(@AITAY) - . v v e e e e e e e e 30
2.2.4 shift(@rray)........... ..t 30
2.2.5 unshift(@rray, LIST).......... ... 30
2.2.6 foreach (@rray)..........c ... 31
2.2.7 SOt (@Array)ottt e e e e e e e e e 32
2.2.8 reverse(@rrray)ot 33
2.2.9 splice(@rray).......... ..., 33
2.2.10 Undefined and Uninitialized Arrays............. 33
2.3 Hashes. e 34
2.3.1 exists (_$hash{$key}). 35
2.3.2 delete (_$hash{key})........ 36
2.3.3 keys(_Yhash). 37
2.3.4 values(_Yash). 38
2.3.5 each(Yash). 38
2.4 List ContexXt........ . 43
2.5 Ref ereNCeS. e 45
2.5.1 Naned Referents. 46
2.5.2 References to Naned Referents................... 46
2.5.3 Dereferencing., 46
2.5.4 Anonynous Referents............ 47
2.5.5 Conplex Data Structures........................ 49
2.5.5.1 Autovivification............ 50
2.5.5.2 Miultidinmensional Arrays..................... 51
2.5.6 Stringification of References................... 51
2.5.7 The ref () _function........... 52
Control FlLOW. 53
3.1 Label S. ... 54
3.2 last LABEL: e 55
3.3 next LABEL: 55
3.4 redo LABEL: e 55
Packages and Nanespaces and Lexical Scoping 55
4.1 Package Declaration................ ... 55
4.2 Declaring Package Variables Wth our................ 56
4.3 Package Variables inside a Lexical Scope............ 57
4.4 Lexical SCOPE. e, 58
4.5 Lexical Variables.......... 58
4.6 Garbage Coll ection. i, 60
4.6.1 Reference Count Garbage Collection.............. 60
4.6.2 Garbage Collection and Subroutines.............. 60
4.7 Package Variables Revisited........... 61
4.8 Calling local () on Package Variables................ 62
SUDr QUL T NES. 64
5.1 Subroutine Sigil......... 64
5.2 Naned Subroutines. 64
5.3 Anonynous Subroutines............... ..., 65
5.4 Data::Dunper and subroutines........................ 65

3of 138

5.5 Passing Argunents to/froma Subroutine.............. 66
5.6 Accessing Argunents inside Subroutines via @....... 66
5.7 Dereferencing Code References....................... 67
5.8 Inplied ArgumentsS. 67
5.9 Subroutine Return Value......... 68
5.10 Returning False.......... 68
5.11 Using the caller() Function in Subroutines......... 69
5.12 The caller() function and $wantarray............... 70
5.13 Using wantarray to Create Context Sensitive
SUDIr QUL T NES. 71
6 Conpiling and Interpreting............. ..., 71
7 Code Reuse, Perl Nbdules.......... 72
8 The use Statement. e 73
9 The use Statement, Fornmally......... 74
9.1 The @NC Al ayV. . ..o e e e s s s 74
9.2 The use lib Statenent....... il .. 75
9.3 The PERL5LIB and PERLLIB Environnent Variables...... 75
9.4 The require Statenment......... 75
9.5 MODULENAME -> inmport (LISTOFARGS). 76
9.6 The use Execution Tinmeline............ 77
10 Dl @SS() . o v 77
11 Method Calls. 79
11.1 I nheritancCe. e e e 81
11.2 USE DaASE. 82
11.3 I NVOCANT->i sa(BASEPACKAGE) e 83
11.4 | NVOCANT->can(VETHODNAME) ottt e e e e e e e e e e 83
11.5 Interesting lnvocants.u .. 84
12 Procedural Perl 85
13 Object Oiented Perlt 85
13. 1 CASS. . oo e 87
13.2 Polynorphi SmM 87
13.3 SUPER. . . . oo 88
13.4 Obhject DeStruCtion. 90
14 Object Oiented ReVIi €Wo s 90
14. 1 Nodul €S. 90
14.2 use MoAul €. 91
14.3 bless / conStruUCtorsS. i 91
14. 4 Net hodsS. o 91
14.5 I nheritancCe. e e s, 92
14.6 Overriding Methods and SUPER. 92
15 CPAN. . . o 92
15.1 CPAN, The Wb Site. st 93
15.2 CPAN, The Perl Nbdule.......... 93
15.3 Plain dd Docunentation (POD) and perldoc.......... 95
15.4 Creating Mdules for CPAN with h2xs................ 95
16 The Next Level s st 95
17 Command Line ArgumentsS., 96
17.1 @ARGV. . . . 97
17.2 Getopt::Declare. 99
18 File Input and Qutput. 102
18. 1 OPEN. . . o o ot e e, 102
18.2 cloSe. e, 102
18.3 read. 102

4 of 138

18. 4 Writ 103
18.5 File Tests. e e 104
18.6 File Aobbing............ 104
18.7 File Tree Searching............ i .. 104
19 Operating System Conmmands. 105
19.1 The system() function............ 105
19.2 The Backtick Operator. 106
19.3 Operating System Commands ina GJ 106
20 Regul ar EXPresSiONS.ttt et et e e 106
20.1 Variable Interpolation............ 108
20.2 Wldcard Exanple........... 109
20.3 Defining a Pattern. 109
20.4 Metacharacters. e s e 110
20.5 Capturing and Custering Parenthesis.............. 111
20.6 Character € aSSeS. . .. v e e 113
20.6.1 Metacharacters Wthin Character d asses....... 113
20.7 Shortcut Character A asSesS..........uuiii. .. 113
20.8 Geedy (Maxinmal) Quantifiers........... 114
20.9 Thrifty (Mnimal) Quantifiers..................... 114
20.10 Position Assertions / Position Anchors........... 115
20.10.1 The \b Anchor........ 116
20.10.2 The \G Anchor. it 116

20. 11 Modifiers. e 117
20.11.1 dobal Mdifiers......... 118
20.11.2 The mAnd s Mdifiers.......... 118
20.11.3 The x Modifier......... 120
20.12 Modifiers For m{} Operator....................... 121
20.13 Moydifiers for s{}{} Operator..................... 121
20.14 Modifiers for tr{}{} Qperator.................... 121
20.15 The gr{} function........... 121
20.16 Commbn Patt erns.o 121
20.17 Regexp: i CoOMIDN. ot e e e e e e 122
21 Parsing with Parse::RecDescent.............. 122
22 Perl, GQUI, and TK. 125
23 GNU Free Docunentation License..............o....... 127

5of 138

1 The lmpatient Introduction to Per|

This document is for people who either want to learn perl or are aready programming in
perl and just do not have the patience to scrounge for information to learn and use perl.
This document should also find use as a handy desk reference for some of the more
common perl related questions.

1.1 Thehistory of perl in 100 wordsor less

In the mid 1980s, Larry Wall was working as a sys-admin and found that he needed to do
anumber of common, yet oddball functions over and over again. And he did not like any
of the scripting languages that were around at the time, so he invented Perl. Version 1
was released circa 1987. A few changes have occurred between then and now. The
current version of Perl has exceeded 5.8.0 and is a highly recommended upgrade.

Perl 6 is on the drawing board as a fundamental rewrite of the language. It is not available
yet, and probably will not be available for some time.

1.2 Basic Formatting for this Document

This document is formatted into text sections, code sections, and shell sections. This
sentence is part of atext section. Text sections will extend to the far left margin and will
use a non-monospaced font. Text sections contain descriptive text.

Code sections are indented.

They al so use a nonospaced font.

This is a code section, which represents
code to type into a script.

You will need to use a TEXT EDI TOR,

not a WORD PROCESSOR to create these files.
Generally, the code is contained in one file,
and is executed via a shell conmmand.

If the code section covers nultiple files,
each file wll be | abel ed.

###f 1 | ename: MyFi |l e. pm
This code will be placed in a
file called MyFile.pm

#! [/ usr/ 1 ocal / bi n/ perl

###f 1 | ename: myscri pt. pl

This code will be placed in a file
cal l ed nyscript. pl

The first line of nyscript.pl will be the
line with #!/usr/local/bin/perl

6 of 138

shell sections are indented |ike code sections
shel | sections al so use nonospaced fonts.

shel |l sections differ fromcode sections in

that shell sections start with a '>' character
whi ch represents a shell pronpt.

shel | sections show commands to type on

t he command | i ne.

shel | sections al so show t he output of a script,
i f any exists.

In sinple exanples, the code is shown in a

code section, 1medi ately foll owed by the output
fromrunning the script. The command to run

the script is dropped to save space.

VVVVVVVVVVYVYVYV

As an example, the code for asimple "Hello World" script is shown here. It can be typed
into afile of any name. The name of the file is not important. The command to execute
the script is not important either. In this example, the code isimportant, and the output is
important, so they are they only things shown.

print "Hello World\n";
> Hello Wrld

THISDOCUMENT REFERS TO (LI/U)NIX PERL ONLY . Much of thiswill translate
to Mac Perl and Windows Perl, but the exact trand ation will be left as an exercise to the
reader.

1.3 Do You Have Perl Installed

To find out if you have perl installed and its version:

> perl -v
Y ou should have at least version 5.004. If you have an older version or if you have no
perl installed at all, you can download it for free from

http://ww. cpan. org

CPAN is an acronym for Comprehensive Perl Archive Network. The CPAN site contains
the latest perl for download and installation, as was as a TON of perl modules for your
use.

If you are abeginner, get your sys-admin to install perl for you. Even if you are not a
beginner, get your sys-admin to install perl for you.
1.4 Your First Perl Script, EVER

Find out where perl isinstalled:

> whi ch perl
[usr /1 ocal / bi n/ perl

7 of 138

Create afile called hello.pl using your favorite text editor. Type in the following:

#! [/ usr/ bi n/ env perl

use war ni ngs;

use strict,; # comment

use Dat a: : Dunper ;

print "Hello World \n";
(The #! onthefirst line is sometimes pronounced "shebang™)
(The .pl extension is simply a standard accepted extension for perl scripts.)
Run the script:

> perl hello.pl

Hello World
This calls perl and passesit the name of the script to execute. Y ou can save yourself a
little typing if you make the file executabl e:

> chnod +x hell o. pl

And then run the script directly.

> hel | o. pl
Hello World

If". " isnotinyour PATH variable, you will have to run the script by typing:
> . /hello.pl

HOORAY'! Now go update your resume.
Anything from a # character to the end of the line is a comment.
EVERY perl script should have thisline:
use warnings; use strict; use Data::Dunper;

1.5 Default Script Header

All the code examples are assumed to have the following script header, unless otherwise
stated:

#!'/usr/ 1 ocal / bin/perl
use warni ngs;
use strict;

use Dat a: : Dunper ;

8 of 138

Optionally, you may try the header shown below. It uses your PATH environment
variable to determine which perl executable to run. If you need to have different versions
of perl installed on your system, you can control which version of perl they will run by
changing your PATH variable without having to change your script.

#! /usr/bin/env perl
use warni ngs;
use strict;

use Dat a: : Dunper ;
1.6 Free Reference M aterial

Y ou can get quick help from the standard perl installation.

> perl -h

> perl doc

> perldoc -h

> perl doc perl doc

FAQson CPAN: http://www.cpan.org/cpan-fag.html
Mailing Lists on CPAN: http://list.cpan.org
More free documentation on the web: http://www.perldoc.com

Still more free documentation on the web: http://learn.perl.org

1.7 Cheap Reference Material

"Programming Perl" by Larry Wall, Tom Christiansen, and Jon Orwant. Highly
recommended book to have handy at all times. It is sometimes referred to as the "Camel
Book" by way of the camel drawing on its cover. The publisher, O'Reilly, has printed
enough computer books to choke a, well, camel, and each one has a different animal on
its cover. Thereforeif you hear reference to some animal book, it is probably an O'Rellly
book. Well, unless its the "Dragon Book", because that refersto a book called
"Compilers' by Aho, Sethi, and Ullman. Anyways, when | get agraphic that | like, | will
dap it on the front cover and give this document a picture name as well.

1.8 Acronymsand Terms

PERL: Originally, "Pearl" shortened to "Perl" to gain status as a 4-letter word. Now
considered an acronym for Practical Extraction and Report Language, as well as Petty
Ecclectic Rubbish Lister. The name was invented first. The acronyms followed.

CPAN: Comprehensive Perl Archive Network. See http://www.cpan.org for more.

9of 138

DWIM: Do What | Mean. Once upon atime, the standard mantra for computer
inflexibility wasthis: "I really hate this darn machine, | wish that they would sell it. It
never does what | want, but only what | tell it." DWIM-inessis an attempt to embed perl
with telepathic powers such that it can understand what you wanted to write in your code
even though you forgot to actually typeit. Well, aright, DWIM isjust away of saying
the language was designed by some really lazy programmers so that you could be even
lazier than they were. (They had to write perl in C, so they could not be TOO lazy.)

AUTOVIVIFY: "auto" meaning "self". "vivify" meaning "aive". To bring oneself to
life. Generally applies to perl variables that can grant themselvesinto being without an
explicit declaration from the programmer. Part of perl's DWIM-ness. "Autovivify" isa
verb. The noun form is "autovivification". Sometimes, autovivification is not what you
meant your code to do, and for some reason, when "do what | mean" meets
autovivification in perl, autovivification wins. And now, a Haiku:

Do What | ©Mean and
Aut ovi vi fication
soneti nes unwant ed

TMTOWTDI: Thereis More Than One Way To Do It. An acknowledgement that any
programming problem has more than one solution. Rather than have perl decide which
solution isbest, it givesyou all the tools and lets you choose. This allows a programmer
to select the tool that will let him get his job done. Sometimes, it gives a perl newbie just
enough rope to hang himself.

Foo Fighters: A phrase used around the time of WWII by radar operators to describe a
signal that could not be explained. Later became known as a UFO. This has nothing to do
with perl, except that "foo" is a common variable name used in perl.

Fubar: Another WWI1 phrase used to indicate that a mission had gone seriously awry or
that a piece of equipment was inoperative. An acronym for Fouled Up Beyond All
Recognition and similar interpretations. This has nothing to do with perl either, except
that fubar somehow got mangled into foobar, and perl is often awash in variables named
"foo" and "bar", especially if the programmer wishes to hide the fact that he did not
understand his code well enough to come up with better names. If you use a $foo variable
in your code, you deserve to maintain it.

10 of 138

2 Storage

Perl has three basic storage types. Scalars, Arrays, Hashes.

The most basic storage typeisa Scalar.

Arrays and Hashes use Scalars to build more complex data types.

2.1 Scalars
Scalars are preceded with adollar sign sigil. A "$" isastylized "S".
Scalars can store Strings, Numbers (integers and floats), References, and Filehandles.
Perl is smart enough to know which type you are putting into a scalar and handleit.
my $diameter = 42;

ny $pi = 3. 1415;

my $initial ='g';
my $name = 'John Doe';
ny $ref _to_nane = \ $nane

Without "use strict;" and without declaring a variable with a"my", using avariable

causes perl to create one and initialize it to ™" or 0. Thisis called autovivication.
Autovivify : to bring oneself to life.

In most common situations, autovivication is handy. However, in certain situations,

autovivification can be an unholy monster.

my $circunference = $pie * $diameter;
oops, $pie doesn't exist. Autovivified to zero,
therefore $circunference is zero.

Without use war ni ngs; use strict; perlwill autovivify anew variable
caled "pie", initialize it to zero, and assume that is what you meant to do. Thereisno
reason that warnings and strictness should not be turned on in your scripts.

11 of 138

2.1.1 Scalar Strings

Scalars can store strings. Y ou do not have to declare the length of the string, perl just
handlesit for you automatically.

2.1.1.1 String Literals
String literals must be in single or double quotes or you will get an error.

print hello;
Error: Unquoted string "hello” may clash with
reserved word

Y ou can use single quotes or double quotes to set off astring literal:

ny $nane = 'nud';

ny $greeting = "hello, $nanme\n";
print $greeting;

> hell o, nud

Y ou can also create alist of string literals using the qw() function.

my ($first, $last)=gwm John Doe);
print "first is '$first'\n";
print "last is '"$last'\n";

> first is "John'

> |ast is ' Doe'

2.1.1.2 Single quotes ver sus Double quotes

Single quoted strings are a "what you see is what you get" kind of thing.

ny $nanme = 'nud';
print 'hello $nane';
> hell o $nane

Double quotes means that you get SOME variable interpolation during string eval uation.
Complex variables, such as a hash lookup cannot be put in double quoted strings and get
interpolated properly.

my $nane = 'nud';
print "hello $name \n";
> hello nud

Note: adouble-quoted "\n" is a new-line character.

12 of 138

2.1.1.3 chomp

Y ou may get rid of anewline character at the end of a string by chomp-ing the string. The
chomp function removes one new line from the end of the string even if there are
multiple newlines at the end. If there are no newlines, chomp |leaves the string alone. The
return value of chomp is what was chomped (seldom used).

My $string = "hello world\n";
chomp($string);

warn "string 1s '$string’ \n
> string is "hello world

2.1.1.4 concatenation

String concatenation uses the period character .

my $fullname = 'nmud" . "bath";

2.1.1.5 repetition

Repeat a string with the "x" operator.
ny $line ='-' x 80; # $line is eighty hypens

2.1.1.6 length
Find out how many characters arein a string with length().
ny $len = length($line); # $len is 80

2.1.1.7 substr

substr (STRI NG _EXPRESSI ON, OFFSET, LENGTH);
Spin, fold, and mutilate strings using substr(). The substr function gives you fast access to
get and modify chunks of astring. Y ou can quickly get achunk of LENGTH characters
starting at OFFSET from the beginning or end of the string (negative offsets go from the
end). The substr function then returns the chunk.

ny $chunk = substr('the rain in spain', 9, 2);

warn "chunk is '$chunk'";

> chunk is "in'

The substr function can aso be assigned to, replacing the chunk aswell. You need a
string contained in avariable that can be modified, rather than using a constant literal in
the example above.
ny $string = 'the rain in spain';
substr($string, 9, 2) = 'beyond';
warn "string 1s '$string'";
> string is "the rain beyond spain

13 of 138

2.1.1.8 split
split(/PATTERN , STRI NG EXPRESSI ON, LIMT);

Use the split function to break a string expression into components when the components
are separated by a common substring pattern. For example, tab separated datain asingle
string can be split into separate strings.

ny $tab_sep data = "John\t Doe\tnal e\t 42";

my ($first, $last, $gender, $age)
= split(/\t/, $tab_sep_data);

Y ou can break a string into individual characters by calling split with an empty string
pattern *". The/PATTERN/ in split() is a Regular Expression, which is complicated
enough to get its own chapter.

2.1.19join
joi n(" SEPARATOR STRING , STRINGL, STRIN&, ...);

Usejoin to stitch alist of stringsinto a single string.

ny $string = join(" and ",
"appl es', 'bananas', 'peaches');
warn "string is '$string'";
> string is "apples and bananas and peaches'. ..

2.1.1.10 qw
The qw() function takes alist of barewords and quotes them for you.

my $string =
join(" and ", gw appl es bananas peaches));

warn "string is '$string";

> string is 'appl es and bananas and peaches'...

14 of 138

2.1.2 Scalar Numbers

Perl generally uses floats internally to store numbers. If you specify something that is
obviously an integer, it will use an integer. Either way, you ssimply useit asascalar.

ny $days_in_week = 7; # scal ar => integer
ny $tenperature = 98. 6; # scalar => fl oat
2.1.2.1 Numeric Literals

Perl allows several different formats for numeric literals, including integer, floating point,
and scientific notation, as well as decimal, octal, and hexadecimal.

Binary numbers begin with "0b"

hexadecimal numbers begin with "0x"

Octal number begin witha"0"

All other numeric literals are assumbed to be base 10.

ny $solar_tenp_c = 1.5e7; # centigrade
ny $solar_tenp_f = 27 _000_000.0; # fahrenheit
ny $base address = 01234567; # oct al
ny $hi gh_address = 0Oxfa94; # hexadeci nmal
ny $l ow address = 0b100101; # binary
2.1.2.2 Numeric Functions
2.1.2.3 abs
Use abs to get the absolute value of a number.
ny $varl = abs(-3.4); # varl is 3.4
ny $var2 = abs(5.9); # var2 is 5.9
2.1.24int

Use "int" to convert afloating point number to an integer. Note that thistruncates
everything after the decimal point, which means you do NOT get rounding. Truncating
means that positive numbers always get smaller and negative numbers always get bigger.

my $price = 9.95;

ny $dollars = int ($price);

dollars is 9, not 10! fal se advertising!

my $y_pos = -5.9;

my $y_Int i nt ($y_pos);
#y_int is -5 (-51s "bigger" than -5.9)

If you want to round afloat to the nearest integer, you will need to write a bit of code.
One way to accomplish it isto use sprintf:

ny $price = 9.95;
ny $dollars = sprintf("%O0f", $price);
dollars is 10

15 of 138

2.1.2.5trigonometry (sin,cos,tan)

The sin, cos, and tan functions return the sine, cosine, and tangent of avalue givenin
RADIANS. If you have avalue in DEGREES, multiply it by (pi/180) first.

ny $angl e = 45; # 45 deg
ny $radians = $angle * (3.14 / 180); # .785 rad
ny $sine_deg = sin($angle); # 0.707

ny $sine_rad = sin($radians); # 0.707

If you need inverse sine, cosine, or tangent, then use the Math::Trig module on CPAN.

2.1.2.6 exponentiation
Usethe" **" operator to raise anumber to some power.

ny $seven_squared 7 ** 2, # 49
ny $five_cubed 5 ** 3; #125
ny $three to the fourth 3 ** 4; # 81

Use fractional powers to take aroot of a number:

ny $square_root of 49
ny $cube root of 125
ny $fourth root of 81

49 ** (1/2): # 7
125 ** (1/3); # 5
81 ** (1/4); # 3

Standard perl cannot handle imaginary numbers. Use the Math::Complex module on
CPAN.

2.1.2.7sgrt
Use sgrt to take the square root of a positive number.
ny $square_root_of 123 = sqrt(123); # 11.0905

16 of 138

2.1.2.8 natural logarithms(exp,log)

The exp function returns € to the power of the value given. To get €, call exp(1) ;
ny $value of e = exp(l); # 2.7183
ny $bi g_num= exp(42); # 2.7183 ** 42 = 1.7el8
The log function returns the inverse exp() function, which isto say, log returns the
number to which you would have to raise €to get the value passed in.

ny $inv_exp = | og($big_num; # inv_exp = 42

If you want another base, then use this subroutine:
sub log_x_base_b {return log($_[0])/1log($_[1]);}

want the | og base 10 of 12345

i.e. to what power do we need to raise the

nunber 10 to get the value of 123457

ny $answer = | og_x_base b(12345,10); # answer = 4.1

Note that inverse natural logs can be done with exponentiation, you just need to know the

value of the magic number € (~ 2.718281828). The exp function is straightforward
exponentiation:

big_num= 2.7183 ** 42 = 1.7el8
ny $bi g num = $val ue_of e ** 42;
Natural logarithms simply use the inverse of the value (i.e. 1/value) with exponentiation.
inv_exp = 2.7183 ** #1/1.7e18) = 42
ny $inv_exp = $value_of e ** (1/$big _num;
2.1.2.9 random numbers (rand, srand)
The rand function is a pseudorandom number generator (PRNG).
If avalueis passed in, rand returns a number that satisfies (0 <= return <=input)
If novalueis passed in, rand returns anumber in therange (0 <=return< 1)

The srand function will seed the PRNG with the value passed in. If no valueis passed in,
srand will seed the PRNG with something from the system that will give it decent
randomness. Y ou can pass in afixed value to guarantee the values returned by rand will
always follow the same sequence (and therefore are predictable). Y ou should only need
to seed the PRNG once. If you have aversion of perl greater than or equal to 5.004, you
should not need to call it at all, because perl will call srand at startup.

17 of 138

2.1.3 Converting Between Strings and Numbers

Many languages require the programmer to explicitely convert numbers to strings before
printing them out and to convert strings to numbers before performing arithemetic on
them. Perl is not one of these languages.

Perl will attempt to apply Do What | Mean to your code and just Do The Right Thing.
There are two basic conversions that can occur: stringification and numification.

2.1.3.1 Stringify
Stringify: Converting something other than a string to a string form.

Perl will automatically convert a number (integer or floating point) to a string format
before printing it out.

ny $mass = 7. 3;

ny $volume = 4;

warn "mass is '$mass'\n";

warn "volune is '$volunme'\n";

> mass is '7.3
> volum is "4

Even though $mass is stored internally as a floating point number and $volumeis stored
internally as an integer, the code did not have to explicitely convert these numbersto
string format before printing them out. Perl will attempt to convert the numbersinto the
appropriate string representation. If you do not want the default format, use sprintf.

If you want to force stringification, simply concatenate a null string onto the end of the
value.

ny $mass = 7. 3; # 7.3
ny $string_mass = $mass .= "' #'7.3

18 of 138

2.1.3.1.1 sprintf
Use sprintf to control exactly how perl will convert a number into string format.
sprintf (FORVAT_STRING LIST_OF_VALUES);

For example:

ny $pi = 3.1415;

my $str = sprintf("%06.2f", $pi);
warn "str is '$str'";

> str is '003. 14

Decoding the above format string:

% => format

0 =>fill leading spaces with zero

6 => total |length, Including deciml point
.2 => put two places after the deciml point
f => floating point notation

To convert a number to a hexadecimal, octal, binary, or decimal formated string, use the
following FORMAT_STRINGS.

hexadeci nal "0 x" The letter 'I" (L)
oct al "0 o" i ndicates the input is
bi nary "0 b" an integer, possibly
deci mal integer "%d" a Long i nteger.
deci mal fl oat 7
scientific " e

2.1.3.2 Numify

Numify: Converting something other than a number to a numeric form.

Sometimes you have string information that actually represents a number. For example, a
user might enter the string "19.95" which must be converted to a float before perl can
perform any arithemetic onit.

Y ou can force numification of avalue by adding integer zero to it.
ny $user input = '19.95"; # '19. 95
my $price = $user_input +0; # 19.95
If the string isNOT in base ten format, then use oct() or hex()

2.1.3.2.1 oct

Theoct function can take a string that fits the octal, hexadecimal, or binary format and
convert it to an integer.

binary formatted strings start with "0b"
hexadecimal formatted strings start with "0x"

19 of 138

al other numbers are assumed to be octal strings,

Note: even though the string might not start with a zero (asrequired by octal literals), oct
will assume the string isoctal. Which means calling oct() on a decimal number would be
abad thing.

To handle a string that could contain octal, hexadecimal, binary, OR decimal strings, you
could assume that octal strings must start with "0". Then, if the string starts with zero,

call oct on it, else assume its decimal. This example uses regular expressions and a
tertiary operator, which are explained later.

ny $num = ($str=~n{"0}) ? oct($str) : $str + O;

2.1.3.2.2 hex

The hex() function takes a string in hex format and convertsit to integer. The hex()
function is like oct() except that hex() only handles hex base strings, and it does not
require a"0x" prefix.

2.1.4 Undefined and Uninitialized Scalars

All the examples above initialized the scalars to some known value before using them.
Y ou can declare avariable but not initialize it, in which case, the variable is undefined.

If you use a scalar that is undefined, perl will stringify or numify it based on how you are
using the variable.

An undefined scalar stringifiesto an empty string: "
An undefined scalar numifies to zero: 0

Without warnings or strict turned on, this conversion is silent. With warnings/strict on,
the conversion still takes place, but awarning is emitted.

Since perl automatically performs this conversion no matter what, there is no string or
arithematic operation that will tell you if the scalar is undefined or not.

Use the defined() function to test whether a scalar is defined or not.
If the scalar is defined, the function returns a boolean "true” (1)
If the scalar isNOT defined, the function returns a boolean "false" ("").

20 of 138

If you have a scalar with a defined valuein it, and you want to return it to its uninitialized
state, assign undef to it. Thiswill be exactly asif you declared the variable with no initial

value.

ny $var; # undef

print "test 1 :";

|f(def|ned($var)) {print "deflned\n"'}
el se {print "undefined\n"

$var = 42; # defined

print "test 2 :";

| f (defined($var)) {print "defined\n";}
el se {print "undefined\n";}

$var = undef; # undef as if never initialized
print "test 3 :";

| f (defined($var)) {print "defined\n";}
el se {print "undefined\n";}

> test 1 :undefined
> test 2 :defined
> test 3 :undefined

2.1.5 Booleans

Perl does not have a boolean "type" per se. Instead, perl interprets scalar strings and
numbers as "true" or "false" based on some rules:

1) Strings "" and "0" are FALSE, any other string
or stringification is TRUE

2) Nunber 0 is FALSE, any other nunber is TRUE

3) all references are TRUE

4) undef is FALSE

Note that these are SCALARS. Any variable that isnot a SCALAR isfirst evaluated in
scalar context, and then treated as a string or number by the above rules. The scalar
context of an ARRAY isitssize. An array with one undef value has a scalar() value of 1
and istherefore evaluated as TRUE.

21 of 138

A subroutine returns a scalar or alist depending on the context in which itiscalled. To
explicitely return FALSE in a subroutine, use this:

return wantarray() ? () : O; # FALSE

Thisis sufficiently troublesome to type for such a common thing that an empty return
statement within a subroutine will do the same thing:

return; #FALSE
2151FALSE
The following scalars are interpreted as FAL SE:

i nteger O # fal se

fl oat 0.0 # fal se

string 'O # fal se

string "' # fal se

undef # fal se
2152 TRUE

ALL other values are interpreted as TRUE, which means the following scalars are
considered TRUE, even though you might not have expected them to be false.

string '0.0 # true
string 00 # true
string ‘'false" # true
f | oat 3.1415 # true
I nteger 11 # true
string 'yowser' # true

If you are doing alot of work with numbers on avariable, you may wish to force
numification on that variable ($var +0) before it gets boolean tested, just in case you
end up with astring "0.0" instead of afloat 0.0 and get some seriously hard to find bugs.

Note that the string '0.0" is TRUE, but ('0.0'+0) will get numified to O, which is FALSE. If
you are processing a number as a string and want to evaluate it asa BOOLEAN, make
sure you explicitely NUMIFY it before testing its BOOLEANNESS.

Built in Perl functions that return a boolean will return an integer one (1) for TRUE and
an empty string ("") for FALSE.

22 of 138

2.1.5.3 Comparators

Comparison operators return booleans, specifically an integer 1 for true and anull string

"" for false. The" Conpari son" operator ("<=>" and "cnp") return a-1, 0, or +1,
indicating the compared values are less than, equal to, or greater than. Distinct
comparison operators exist for comparing strings and for comparing numbers.

Function
equal to
not equal to
lessthan

greater than

lessthan or equal to
greater than or equal to

Comparison (<-1, ==0,>1)

Note that if you use a string compare to compare two numbers, you will get their
alphabetical string comparison. Perl will stringify the numbers and then perform the
compare. Thiswill occur silently; perl will emit no warning. And if you wanted the
numbers compared numerically but used string comparison, then you will get the wrong
result when you compare the strings ("9" 1t "100").

String "9" is greater than (gt) string "100".
Number 9 isless than (<=) number 100.

If you use a numeric operator to compare two strings, perl will attempt to numify the
strings and then compare them numerically. Comparing "John" <= "Jacob" will cause
perl to convert "John" into a number and fail miserably. However, if warnings/strict is
not on, it will fail miserably and SILENTLY, assigning the numification of "John" to
integer zero.

The numberic comparison operator '<=>' is sometimes called the "spaceship operator".

2.1.5.4 Logical Operators

Perl has two sets of operators to perform logical AND, OR, NOT functions. The
difference between the two is that one set has a higher precedence than the other set.

23 of 138

The higher precedence logical operators arethe'& &', '||', and '!" operators.

function operator usage return value

AND && $one && $two if ($one is fal se) $one el se $two
oR | | $one || $two if ($one is true) $one el se $two
NOT ! I $one if ($one is false) true else false

The lower precedence logical operators are the 'and', ‘or', 'not’, and 'xor' operators.

function operator usage return value

AND and $one and $two if ($one is false) $one el se $two

OoR or $one or $two if ($one is true) $one el se $two

NOT not not $one if ($one is false) true el se false

XOR xor $one xor $two if (($one true and $two fal se?] or
($one fal se and $two true)) then

return true el se fal se

Both sets of operators are very common in perl code, so it isuseful to learn how
precedence affects their behavior. But first, some examples of how to use them.

2.1.5.4.1 Default Values

This subroutine has two input parameters ($left and $right) with default values (1.0 and
2.0). If the user calls the subroutine with missing arguments, the undefined parameters
will instead receive their default values.

?ub nmysub
my($left, $right)=@;
$left ||]= 1.0;
$right || = 2.0;
} # deal with $left and $right here.
The'||=' operator is afancy shorthand. This:
$left ||= 1.0;

is exactly the same as this:
$left = $left || 1.0;

24 of 138

2.1.5.4.2 Flow Control

The open() function here will attempt to open $filename for reading and attach
$filehandleto it. If open() failsin any way, it returns FALSE, and FALSE OR'ed with die
() means that perl will evaluate the dig() function to finish the logical evalutation. It won't
compl ete because execution will die, but the end result is code that is actually quite
readable.

open (ny $filehandle, $filenane)
or die "cant open";

2.1.5.4.3 Precedence

The reason we used '||' in the first example and 'or' in the second example is because the
operators have different precedence, and we used the one with the precedence we needed.

2.1.5.4.4 Assignment Precedence

When working with an assignment, use'||' and '& &', because they have a higher
precedence than (and are evaluated before) the assignement '=". The 'or' and ‘and'
operators have a precedence that is LOWER than an assignment, meaning the assignment
would occur first, followed by any remaining 'and' and 'or' operators.

Right:

my $default =0 || 1;
default is 1
Wrong:

ny $default = 0 or 1;
default is O

The second exampleis equivalent to this:
(nmy $default = 0) or 1;

which will ALWAY S assign $default to the first value and discard the second value.

2.1.5.4.5 Flow Control Precedence

When using logical operators to perform flow control, use 'or' and ‘and' operators,
because they have lower precedence than functions and other statements that form the
boolean inputs to the 'or' or 'and' operator. The'||' and '& &' have higher precedence than
functions and may execute before the first function call.

25 of 138

Right:

close $fh or die "Error:could not close";
Wrong:

close $fh || die "Error: could not close";

The second example is equivalent to this:
close ($fh || die "Error");

which will ALWAY S evaluate $fh as true, NEVER die, and close $fh. If closg() fails, the
return value is discarded, and the program continues on its merry way.

It is always possible to override precedence with parentheses, but it is probably better to
get in the habit of using the right operator for the right job.

2.1.6 References

A reference points to the variable to which it refers. It iskind of like apointer in C, which
says "the datal want is at this address’. Unlike C, you cannot manually alter the address
of aperl reference. Y ou can only create areference to variables that are visible in your
source code.

Create areference by placing a"\" in front of the variable:
ny $name = 'John';
ny $age = 42;
ny $nane_ref = \$nane;
my $age ref = \S$age;

Perl will stringify areference so that you can print it and seewhat it is.
warn "age ref is '$age ref'";

> age_ref is ' SCALAR(Ox812e6ec)"

Thistells you that $age ref isareference to a SCALAR (which we know is called $age).
It also tells you the address of the variable to which we are referring is Ox812e6ec.

Y ou cannot referencify astring. |.E. you cannot give perl a string, such as"SCALAR
(0x83938949)" and have perl give you areference to whatever is at that address. Perl is
pretty loosy goosey about what it will let you do, but not even perl is so crazy asto give
people compl ete access to the system memory.

Y ou can dereference areference by putting an extra sigil (of the appropriate type) in front
of the reference variable.

ny $nane = 'John';

ny $ref to _nane = \ $nane;

ny $deref name = $$ref to_nane;
war n $der ef _nane;

> John ...

26 of 138

References are interesting enough that they get their own section. But | introduce them
here so that | can introduce areally cool module that uses references: Data::Dumper.
Data::Dumper will take areference to ANY THING and print out the thing to which it
refersin a human readable form.

This does not seem very impressive with areference to ascalar:

ny $nane = 'John';
ny $ref _to _nane = \ $nane;
war n Dunper \$ref to_nane;

> $VARL = \' John';
But thiswill be absolutely essential when working with Arrays and Hashes.

2.1.7 Filehandles

Scalars can store afilehandle. File 10 getsits own section, but | introduce it hereto give a
complete picture of what scalars can hold.

Given ascalar that is undefined (uninitialized), calling open() on that scalar and a string
filename will tell perl to open the file specified by the string, and store the handle to that
fileinthe scalar.

open(ny $fh, '>out.txt');

print $fh "hello world\n";

print $fh "this is sinple file witing\n";
cl ose($f h);

The scalar $f h in the example above holds the filehandle to "out.txt". Printing to the
filehandle actually outputs the string to thefile.

There is some magic going on there that | have not explained, but that isaquick intro to
scalar filehandles.

2.1.8 Scalar Review

Scalars can store STRINGS, NUMBERS (floats and ints), REFERENCES, and
FILEHANDLES.

Stringify: to convert something to a string format
Numify: to convert something to a numeric format

The following scalars are interpreted as boolean FAL SE:
(integer O, float 0.0, string "0", string "', undef)

All other scalar values are interpreted as boolean TRUE.

2.2 Arrays
Arrays are preceded with an ampersand sigil. The"@" isastylized "a".

27 of 138

An array stores a bunch of scalars that are accessed via an integer index.
Perl arrays are ONE-DIMENSIONAL ONLY. (Do Not Panic.)
The first element of an array aways starts at ZERO (0).
When you refer to an entire array, usethe " @" sigil.
ny @unbers = qw (zero one two three);

When you index into the array, the "@" character changesto a"$"

nmy @unbers = gw (zero one two three);
my $string = $nunber[2];
warn $string;

> two ...

The length of an array is not pre-declared. Perl autovivifies whatever space it needs.

ny @mont hs;
$nont hs[1] =' January ;

$nont hs[5] =' May"' ;

$rmont hs[0] and $nonths[2..4] are autovivified
and initialized to undef
print Dunper \ @mwont hs;

> $VARL = [

> undef , # index O is undefined
> 'January : # $ront hs[1]

> ${\$VARL->[0]}, # this is sane as undef
> $I\$VARL->[0]}, # undef

> ${\ $VARL->[0] }, # undef

> ' May' # $nont hs[5]

> ;

If you want to seeif you can blow your memory, try running this piece of code:

ny @em hog;
$nmem hog[10000000000000000000000] =1;

the array is filled with undefs
except the last entry, which is initialized to 1

Arrays can store ANY THING that can be stored in a scalar

ny @unk_drawer = ('pliers', 1,1,1, "*', '[[",
3.14, 9*11, 'yaba', 'daba');

28 of 138

Negative indexes start from the end of the array and work backwards.

ny @olors = qw (red green blue);
my $l ast =$col ors[-1];
warn "last is '$last'";

> last is 'blue

2.2.1 scalar (@array)

To get how many elements are in the array, use "scalar"

ny @honetic = gqw (al pha bravo charlie delta);
ny $quantity = scal ar(@honetic);
warn $quantity;

> 4 ...

When you assign an entire array into a scalar variable, you will get the same thing, but
calling scalar() is much more clear.
ny @honetic = qw (al pha bravo charlie);

ny $quant = @honeti c;
war n $quant;

>3 ...
Thisis explained later in the "list context" section.

2.2.2 push(@array, LIST)

Use push() to add elements onto the end of the array (the highest index). This will
increase the length of the array by the number of items added.
ny @roceries = qw (mlk bread);

push(@roceries, gw (eggs bacon cheese));
print Dunper \ @roceri es;

> $VARL = |

> "mlk',
> "bread',
> 'eggs’,
> " bacon',
> ' cheese'
> |

29 of 138

2.2.3 pop(@array)

Use pop() to get the last element off of the end of the array (the highest index). This will
shorten the array by one. The return value of pop() isthe value popped off of the array.

ny @anmes = qw (alice bob charlie);
my $l ast_name = pop(@anes)

war n "popped = $l ast _name";

print Dunper \ @anes;

> popped = charlie ...

> $VARL = |
> "alice',
> " bob'
>] X
2.2.4 shift(@array)

Use shift() to remove one element from the beginning/bottom of an array (i.e. at index
zero). All elements will be shifted DOWN one index. The array will be shorted by one.
The return value is the value removed from the array.

ny @urses = qw (fee fie foe fum);
ny $start = shift(@urses);

warn $start;

war n Dunper \ @ur ses;

> fee

> $VARL = |

> "fie',
> 'foe',
> fum
>];

2.2.5 unshift(@array, LI1ST)

use unshift() to add elementsto the BEGINNING/BOTTOM of an array (i.e. at index
ZERO). All the other elementsin the array will be shifted up to make room. This will
length the array by the number of elementsin LIST.

ny @rees = gqw (pine nmaple oak);

unshift(@rees, '"birch');

war n Dunper \ @r ees;

> $VARL = |

> "birch', # index O

> ' pi ne', # old index 0, now 1
> "mapl e', # 2

> ' oak' # 3

> |

30 of 138

2.2.6 foreach (@array)

Use foreach to iterate through all the elements of alist. Itsformal definitionis:
LABEL foreach VAR (LI ST) BLOCK

Thisisacontrol flow structure that is covered in more detail in the "control flow"
section. The foreach structure supports last, next, and redo statements.
Use asimple foreach loop to do something to each element in an array:

nmy @ruits = qw (appl es oranges | enons pears);
foreach ny $fruit (@ruits)
{ print "fruit is "$fruit'\n"; }

> fruit is 'apples'
> fruit is 'oranges’
> fruit is 'lenons'
> fruit is 'pears’

DO NOT ADD OR DELETE ELEMENTSTO AN ARRAY BEING PROCESSED IN A
FOREACH LOORP.

ny @unbers = qw (zero one two three);
foreach ny $num (@wunbers)

shift(@unbers) if($numeq 'one');
print "numis ' $num\n";

}

> numis 'zero'

> numis 'one'

> numis 'three'

note: | deleted 'zero', but | failed to

print out "two', which is still part of array.
BAD! !

VAR acts as an dias to the element of the array itself. Changesto VAR propagate to
changing the array.
ny @ntegers = (23, 142, 9384, 83948);
foreach ny $num (@ nt egers)
{ $num+=100; }
print Dunper \ @ ntegers;

> $VARL = |

> 123,
> 242,
> 9484,
> 84048
2 .

31 of 138

2.2.7 sort(@array)

Use sort() to sort an array aphabetically. The return valueis the sorted version of the
array. The array passed in isleft untouched.

ny @ruit = qw (pears appl es bananas oranges);
nmy @orted array = sort(@ruit);
print Dunper \ @orted array ;

>$VARL = |

> "appl es',
> ' bananas' ,
> ' oranges',
> ' pears'’

> |

Sorting alist of numberswill sort them al phabetically as well, which probably is not what
you want.
ny @cores = (1000, 13, 27, 200, 76, 150);

ny @orted array = sort(@cores);
print Dunper \ @orted array ;

> $VARL = |

> 1000, # 1's
> 13, # 1's
> 150, # 1's
> 200,

> 27,

> 76

> |

The sort() function can also take a code block (any piece of code between curly braces)
which defines how to perform the sort if given any two elements from the array. The
code block uses two global variables, $a and $b, and defines how to compare the two
entries.

Thisis how you would sort an array numerically.

ny @cores = (1000, 13, 27, 200, 76, 150);
ny @orted_array = sort {$a<=>$b} (@cores);
print Dunper \ @orted array ;

> $VARL = [

13,
27,
76,
150,
200,
1000

VVVVVYVYV

32 of 138

2.2.8 reverse(@array)

The reverse() function takes alist and returns an array in reverse order. The last element
becomes the first element. The first element becomes the last element.

ny @unbers = reverse (1000, 13, 27, 200, 76, 150);
print Dunper \ @unbers ;

> $VARL = [

150,
76,
200,
27,
13,
1000

l;

VVVVVYVYV

2.2.9 splice(@array)

Use splice() to add or remove elements into or out of any index range of an array.

splice (ARRAY , OFFSET , LENGTH , LIST);
The elementsin ARRAY starting at OFFSET and going for LENGTH indexes will be
removed from ARRAY . Any elements from LIST will beinserted at OFFSET into
ARRAY.

my @wrds = qw (hello there);
splice(@words, 1, 0, 'out');
warn join(" ", @wrds);

> hello out there ...

2.2.10 Undefined and Uninitialized Arrays

An array isinitialized as having no entries. Therefore you can test to seeif an array is
initialized by calling scalar() onit. Thisis equivaent to calling defined() on a scalar
variable. If scalar() returnsfalse (i.e. integer 0), then the array is uninitialized.

If you want to uninitialize an array that contains data, then you do NOT want to assign it
undef like you would a scalar. Thiswould fill the array with one element at index zero
with a value of undefined.

my @rray = undef; # WWRONG

To clear an array to itsoriginal uninitialized state, assign an empty list to it. Thiswill
clear out any entries, and leave you with a completely empty array.

my @rray = (); # Rl GHT

33 of 138

2.3 Hashes

Hashes are preceded with a percent sign sigil.

The"%" isastylized "key/value" pair.

A hash stores a bunch of scalars that are accessed viaastring index called a "key"
Perl hashes are ONE-DIMENSIONAL ONLY'. (Do Not Panic.)

There is no order to the elementsin a hash. (Wéell, thereis, but you should not use a hash
with an assumption about what order the data will come out.)

Y ou can assign any even number of scalars to a hash. Perl will extract them in pairs. The
first item will be treated as the key, and the second item will be treated as the value.

When you refer to an entire hash, use the "%" sigil.
ny % nfo = qw (nane John age 42);

When you look up akey in the hash, the "%" character changesto a"$"

my % nfo = qw (nanme John age 42);
ny $data = $i nf o{nane};
war n $dat a;

> John ...

The keys of ahash are not pre-declared. If the key does not exist during an
ASSIGNMENT, the key is created and given the assigned value.

ny % nventory;

$i nvent or y{ appl es}=42;
$i nvent or y{ pear s} =17;
$i nvent or y{ bananas} =5;

print Dunper \% nventory;

>$VARL = {

> ' bananas' => 5,
> "appl es' => 42,
> ‘pears' => 17
> } :

34 of 138

If the key does not exist during a FETCH, the key is NOT created, and undef is returned.

ny % nventory;

$1 nvent or y{ appl es} =42;

ny $peaches = $i nvent ory{peaches};
warn "peaches is ' $peaches'";

print Dunper \9% nventory,

> Use of uninitialized value in concatenation
> peaches is '' at ./test.pl line 13.

> $VARL = {

> "appl es' => 42

>)

2.3.1 exists ($hash{$key})

Use exists() to seeif akey existsin ahash. Y ou cannot simply test the value of akey,
since akey might exist but store avalue of FALSE
ny Y%ets = (cats=>2, dogs=>1);
unl ess(exi sts($pets{fish}))
{ print "No fish here\n"; }

Warning: during multi-key lookup, all the lower level keys are autovivified, and only the
last key has exists() tested on it. This only happensif you have a hash of hash references.
References are covered later, but thisis a"feature" specific to exists() that can lead to
very subtle bugs. Note in the following example, we explicitely create the key "Florida",
but we only test for the existence of { Maine} ->{ StateBird}, which has the side effect of
creating the key { Maine} in the hash.

ny %t at ei nfo;
$st at ei nfo{ Fl ori da} - >{ Abbrevi ati on} =" FL';

i f (exists($stateinfo{Mine}->{StateBird}))
{ warn "it exists"; }
print Dunper \ %t ateinfo;

> $VARL = {

"Florida" => {
" Abbreviation' => 'FL'
b
} "Mai ne' => {}

VVVYVYV

35 of 138

Y ou must test each level of key individually, and build your way up to the final key
lookup if you do not want to autovivify the lower level keys.

ny %t at ei nf o;
$st at ei nf o{ Fl ori da} - >{ Abbrevi ati on} =" FL';

i f (exists($stateinfo{Mine}))

{
I f (exists($statei nfo{Maine}->{StateBird}))
{ warn "it exists";

print Dunper \%t at ei nf o;
> $VARL = {

"Florida" => {
"Abbreviation' => 'FL'

VVVYV

2.3.2 delete ($hash{key})

Use delete to delete a key/value pair from a hash. Once akey is created in a hash,
assigning undef to it will keep the key in the hash and will only assign the value to undef.
The only way to remove akey/value pair from a hash is with delete().

nmy %pets =

fi sh=>3,
cat s=>2,
dogs=>1,

)
$pet s{ cat s} =undef ;
del et e($pet s{fish});
print Dunper \%pets;

> $VARL = {

> "cats' => undef,
> "dogs' =>1

> } :

36 of 138

2.3.3keys(%hash)

Use keys() to return alist of all the keysin a hash. The order of the keyswill be based on
the internal hashing algorithm used, and should not be something your program depends

upon. Note in the example below that the order of assignment is different from the order

printed out.

my %Y%pets (:
fish=>3,
cat s=>2,
dogs=>1,
),
f oreach r?/ $pet (keys(%ets))

§Jrint "pet is '$pet'\n";

> pet is 'cats'
> pet is 'dogs'
> pet is 'fish

If the hash is very large, then you may wish to use the each() function described below.

37 of 138

2.3.4 valuey % hash)

Use values() to return alist of al the valuesin ahash. The order of the values will match
the order of the keysreturn in keys().

nmy %pets =
fish=>3,

cat s=>2,
dogs=>1,

keys(%pets);
val ues(%pet s) ;

)i
ny @et_keys
ny @et _vals

print Dunper \ @et_keys;
print Dunper \ @et_vals;

> $VARL = |

> ‘cats',
> "dogs',
> "fish'
> ;

> $VARL = |

> 2,

> 1,

> 3

> |

If the hash is very large, then you may wish to use the each() function described below.

2.3.5 each(%hash)
Use each() to iterate through each key/value pair in a hash, one at atime.
m Y%pets =
fi sh=>3,
cat s=>2,

;Jlogs:>1,

whi | e(ny({$pet , $qt y) =each(%pet s))
g)ri nt "pet='"$pet', qty="$qty'\n";

> pet='cats', qty='2
> pet="dogs', qty='1
> pet="fish', qty="3

38 of 138

Every call to each() returns the next key/value pair in the hash. After the last key/value
pair is returned, the next call to each() will return an empty list, which is boolean fal se.
Thisis how the whileloop is able to loop through each key/value and then exit when
done.

Every hash has one "each iterator" attached to it. Thisiterator isused by perl to
remember where it isin the hash for the next call to each().

Calling keys() on the hash will reset the iterator. The list returned by keys() can be
discared.

keys(%ash) ;

Do not add keys while iterating a hash with each().
Y ou can delete keys while iterating a hash with each().

39 of 138

The each() function does not have to be used inside awhile loop. This example uses a
subroutine to call each() once and print out the result. The subroutineis called multiple
times without using a while() loop.

nm Y%pets =

fi sh=>3,
cat s=>2,
dogs=>1,

sub one_tine

my($pet, $qty) =each(¥pet s) ;

is not defined,

then each() nust have hit end of hash

{

#if key

i f(defined($pet))

{ print
el se
{ print

}
one_tinme;
one_tine;
keys(%pets);
one_ti ne;
one_time;
one_ti ne;
one_ti ne;
one_tine;
one_tine;
> pet='cats', qty='2'
> pet="dogs', qty="1'
> pet='cats', qty='2'
> pet='"dogs', qty='1'
> pet="fish', qty="3
> end of hash
> pet='cats', qty='2'
> pet="dogs', qty="1'

"end of

HHEHHFHFHTFR

"pet='"$pet', qty="$qty'\n"; }

hash\n"; }

cats

dogs

reset the hash iterator
cats

dogs

fish

end of hash

cats

dogs

40 of 138

There is only one iterator variable connected with each hash, which means calling each()
on ahash in aloop that then calls each() on the same hash another loop will cause

problems. The example below goes through the %opets hash and attempts to compare the
quantity of different pets and print out their comparison.

nmy %pets =

fish=>3,
cat s=>2,
;Jlogs:>1,

whi l e(my($orig_pet, $ori g _qty)=each(%pets))

whi{l e(my($cnp_pet, $cnp_qty) =each(%pets))
[f(?ori g_qty>$cnp_qty)

print "there are nore $orig_pet
."than $cnp_pet\n";

}

el se

print "there are | ess $orig pet
."than $cnp_pet\n";

}
}
}

there are nore cats than
there are less cats than
there are nore cats than
there are | ess cats than
there are nore cats than
there are less cats than
there are nore cats than
there are |l ess cats than

VVVVVVVYVYV

dogs
fish
dogs
fish
dogs
fish
dogs
fish

The outside loop calls each() and gets "cats". The inside loop calls each() and gets
"dogs". Theinside loop continues, calls each() again, and gets "fish". Theinside loop

calls each() one more time and gets an empty list. The inside loop exits.

The outside loop calls each() which continues where the inside loop |eft off, namely at
the end of thelist, and returns "cats". The code then enters the inside loop, and the

process repeats itself indefinitely.

41 of 138

One solution for this each() limitation is shown below. The inner loop continuesto call
each() until it gets the key that matches the outer loop key. The inner loop must skip the
end of the hash (an undefined key) and continue the inner loop. This also fixes a problem

in the above example in that we probably do not want to compare akey to itself.

nmy %pets =

fish=>3,
cat s=>2,
;Jlogs:>1,

whi l e(my($orig_pet, $ori g _qty)=each(%pets))

whi | e(1)
{

ny($cnp_pet, $cnp_qt y) =each(%pet s) ;
next unl ess(defi ned($cnp_pet));

| ast if($cnp_pet eq $orig _pet);

i f(?or i g_qty>$%cnp_qty)

print "there are nore $orig_pet
."than $cnp_pet\n";

el se

print "there are | ess $orig pet
."than $cnp_pet\n";

}
}
}

there are nore cats than
there are less cats than
there are | ess dogs than
there are | ess dogs than
there are nore fish than
there are nore fish than

VVVVYVYV

dogs
fish
fish
cats
cats
dogs

If you do not know the outer loop key, either because its in someone else's code and they
do not passit to you, or some similar problem, then the only other solution isto call keys
() on the hash for all inner loops, store the keysin an array, and loop through the array of
keys using foreach. The inner loop will then not rely on the internal hash iterator value.

42 of 138

2.4 List Context

List context is aconcept built into the grammar of perl. You cannot declare a"list
context" in perl the way you might declare an @array or %hash. List context affects how
perl executes your source code. Here is an example.

ny @artl=gw(mlk bread butter);
ny @art2=qw eggs bacon juice);
ny @heckout _counter = (@artl, @art2);
print Dunper \ @heckout_counter;

> $VARL = |

"mlk',
"bread',
"butter',
' eggs’,

" bacon',
"juice'

1;

Basicaly, two people with grocery carts, @cartl and @cart2, pulled up to the
@checkout_counter and unloaded their carts without putting one of those separator bars
in between them. The person behind the @checkout_counter has no idea whose groceries
are whose.

VVVVVYVYV

Everything in list context gets reduced to an ordered series of scalars. The original
container that held the scalars is forgotten.

In the above example the order of scalarsis retained: milk, bread, butter is the order of
scalarsin @cartl and the order of the scalars at the beginning of @checkout_counter.
However, looking at just @checkout_counter, there is no way to know where the contents
of @cartl end and the contents of @cart2 begin. In fact, @cart1 might have been empty,
and all the contents of @checkout_counter could belong to @cart2, but there is no way to
know.

Sometimes, list context can be extremely handy. We have used list context repeatedly to
initialize arrays and hashes and it worked as we would intuitively expect:

ny %pets = (fish=>3, cats=>2, dogs=>1);
ny @artl = gwm mlk br ead eggs) ;

Theinitial values for the hash get converted into an ordered list of scalars
("fish', 3, "cats', 2, 'dogs', 1)

These scalars are then used in list context to initialize the hash, using the first scalar as a
key and the following scalar as its value, and so on throughout the list.

43 of 138

List context applies anytime data is passed around in perl. Scalars, arrays, and hashes are
all affected by list context. In the example below, @house is intended to contain alist of
all the itemsin the house. However, because the %pets hash was reduced to scalarsin list
context, the values 3,2,1 are disassociated from their keys. The @house variable is not
very useful.

ny %ets = (fish=>3, cats=>2, dogs=>1);

ny @efridgerator=gw(m | k bread eggs);

ny @ouse=('couch', %pets, @efridgerator,'chair');
print Dunper \ @ouse,

>$VARL = [

'couch',
‘cats',
21

" dogs',

1,

"fish',
31

"ml k',
"bread',
' eggs’,
‘chair'

1;

There are times when list context on a hash does make sense.

ny %encrypt=(tank=>"turtle', bonber=>"eagle');
ny %lecrypt =reverse(%encrypt) ;
print Dunper \%lecrypt;

VVVVVVVVVVVYV

> $VARL = {

> ‘eagl e’ => 'bonber',
> "turtle' => 'tank'
> };

The %encrypt hash contains a hash ook up to encrypt plaintext into cyphertext. Anytime
you want to use the word "bomber", you actually send the word "eagle". The decryption
Is the opposite. Anytime you receive the word "eagle" you need to trand ate that to the
word "bomber".

Using the %encrypt hash to perform decryption would require aloop that called each() on
the %encrypt hash, looping until it found the value that matched the word received over
the radio. This could take too long.

Instead, because there is no overlap between keys and values, (two different words dont
encrypt to the same word), we can simply treat the %encrypt hash as alist, call the array
reverse() function on it, which flips the list around from end to end, and then store that
reversed list into a %decrypt hash.

44 of 138

2.5 References

References are a thing that refer (point) to something else.

The "something else" is called the "referent”, the thing being pointed to.
Taking areference and using it to access the referent is called "dereferencing”.

A good real-world exampleisadriver'slicense. Y our license "points" to where you live
because it lists your home address. Your licenseis a"reference”. The "referent” isyour
home. And if you have forgotten where you live, you can take your license and
"dereferencing” it to get yourself home.

REFCRENCT DERETERENCTE REFEEENT
license using license to get home home
o 3 B eyl
BT

It is possible that you have roommates, which would mean multiple references exist to
point to the same home. But there can only be one home per address.

In perl, references are stored in scalars. Y ou can create a reference by creating some data
(scalar, array, hash) and putting a"\" in front of it.

ny Y%mone=
()
f .
m

i sh=>3, cat s=>2, dogs=>1,
| k=>1, bread=>2, eggs=>12,

p—

ny $license for_alice = \%one;
ny $license_for_bob = \%oneg;

Alice and Bob are roommates and their licenses are references to the same %home. This
means that Alice could bring in a bunch of new pets and Bob could eat the bread out of
the refridgerator even though Alice might have been the oneto put it there. To do this,
Alice and Bob need to dereference their licenses and get into the original %home hash.

$ {$license for_alice} {dogs} += 5;

del ete($ {$license_for_bob} {mlk});

print Dunper \%hone;

> $VARL = {

> ‘eggs' => 12,
> ‘cats' => 2,
> "bread' => 2,
> ‘dogs' => 6,
> "fish' =>3
> };

45 of 138

2.5.1 Named Referents

A referent isany original data structure: ascalar, array, or hash. Below, we declare some
named referents: age, colors, and pets.

my $age = 42;
ny @olors = g red green blue);
ny %et s=(fish=>3, cat s=>2, dogs=>1);

2.5.2 Referencesto Named Referents

A reference pointsto the referent. To take areference to a named referent, put a"\" in
front of the named referent.

my $ref _to _age = \$age;
ny $r_2 colors = \ @ol ors;
ny $r _pets = \%ets;

2.5.3 Dereferencing

To dereference, place the reference in curly braces and prefix it with the sigil of the
appropriate type. Thiswill give access to the entire original referent.

${$ref to _age}++; # happy birthday
pop(@%r_2 colors});

ny %€opy_of pets = % $r pets};
print "age is '$age'\n";

> age is '43

If there is no ambiguity in dereferencing, the curly braces are not needed.

$$ref to _age ++; # another birthday
print "age is '$age'\n";

> age is '44

46 of 138

It isalso possible to dereference into an array or hash with a specific index or key.

ny @olors = gwm red green blue);
ny Y%pet s=(fish=>3, cat s=>2, dogs=>1);
ny $r_colors = \@olors; ny $r_pets = \%pets;

${$r pets} {dogs} += 5;
${$r _col ors}[1] = 'yell ow ;

print Dunper \@olors; print Dunper \%ets;

> $VARL = |
"red',
"yell ow
] " bl ue'
$VARL = {
‘cats' => 2,
'dogs' => 6,
"fish' => 3

Because array and hash referents are so common, perl has a shorthand notation for
indexing into an array or looking up akey in a hash using areference. Take the reference,
follow it by "->", and then follow that by either "[index]" or "{key}".

This:;

${$r pets} {dogs} += 5;
${$r _col ors}[1] = 'yell ow ;

is exactly the same as this:

$r _pets->{dogs} += 5;

$r _colors->[1] = 'yellow ;
2.5.4 Anonymous Referents

Here are some referents named age, colors, and pets. Each named referent has a reference
toit aswell.

ny $age = 42;

ny @olors = g red green blue);
ny %pet s=(fi sh=>3, cat s=>2, dogs=>1);
my $r_age = \ $age;

ny $r_colors = \ @ol ors;

ny $r_pets = \ %pets;

Itisalso possiblein perl to create an ANONY MOUS REFERENT. An anonymous
referent has no name for the underlying data structure and can only be accessed through
the reference.

47 of 138

To create an anonymous array referent, put the contents of the array in square brackets.
The square brackets will create the underlying array with no name, and return areference
to that unnamed array.

ny $colors _ref = ['red, 'green', 'blue];
print Dunper $colors_ref;

> $VARL = |

> ‘red',

> ‘green',

> " bl ue'

> |

To create an anonymous hash referent, put the contents of the hash in square brackets.
The sgquare brackets will create the underlying hash with no name, and return areference
to that unnamed hash.

ny $pets_ref = { fish=>3, cats=>2, dogs=>1 };

print Dunper $pets_ref;

> $VARL = {
> ‘cats' => 2,
> "dogs' => 1,
> "fish' => 3
> };

48 of 138

Note that $colors _ref isareferenceto an array, but that array has no name to directly
accessits data. Y ou must use $colors_ref to access the datain the array.

Likewise, $pets ref isareference to a hash, but that hash has no name to directly access
its data. Y ou must use $pets ref to access the data in the hash.

2.5.5 Complex Data Structures

Arrays and hashes can only store scalar values. But because scalars can hold references,
complex data structures are now possible. Using references is one way to avoid the
problems associated with list context. Here is another look at the house example, but now
using references.
ny %pets = (fish=>3, cats=>2, dogs=>1);
ny @efridgerator=gw(m | k bread eggs);
ny $house={
pet s=>\ %pet s,
refridgerator=>\@efridgerator

};
print Dunper $house;

> $VARL = {

> "pets' => {

> ‘cats' => 2,

> "dogs' => 1,

> "fish' => 3

>)

> ‘refridgerator’ => |

> ‘mlk',
> " bread',
> ' eggs’
>

> };

The $house variable is areference to an anonymous hash, which contains two keys,
"pets" and "refridgerator”. These keys are associated with values that are references as
well, one a hash reference and the other an array reference.

Dereferencing a complex data structure can be done with the arrow notation or by
enclosing the reference in curly braces and prefixing it with the appropriate sigil.

Ali ce added npre cani nes
$house- >{ pet s} - >{ dogs} +=5;

Bob drank all the mlk
shift (@ $house->{refridgerator}});

49 of 138

2.5.5.1 Autovivification

Perl autovivifies any structure needed when assigning or fetching from areference. The
autovivified referents are anonymous. Perl will assume you know what you are doing
with your structures. In the example below, we start out with an undefined scalar called
$scal. We then fetch from this undefined scalar, asif it were areferenceto an array of a
hash of an array of a hash of an array. Perl autovivifies everything under the assumption
that that is what you wanted to do.

my $scal;
my $val =

$scal - >[2] - >{ sonekey}->[1] - >{ ot her key}->[1] ;
print Dunper $scal;

> $VARL = |

> undef ,

> ${\ $VARL->[0] },

>

> "sonekey' => |

> ${\ $VARL->[0] },
>

> ‘ot herkey' => []
> }

>]

> }

> |

50 of 138

2.5.5.2 Multidimensional Arrays

Perl implements multidimensional arrays using one-dimensional arrays and references.
ny $nmda;

for(ny $i=0;3$i<2; $i ++)
for(nmy $j=0; % <2; $j ++)
for(nmy $k=0; $k<2; $k++)

$nda->[$i]->[$j]->[$k] =
"row=%$1, col =%, depth=$k";

}
}
}
print Dunper $nda;
> $VARL = [
> [
> [
> "row=0, col =0, depth=0",
> "row=0, col =0, depth=1"
> 1
g ;
> "row=0, col =1, depth=0",
> "row=0, col =1, depth=1'
>
>],]
> [
> [
> "row=l, col =0, depth=0",
> "row=l, col =0, depth=1"
>)
e i
> "row=1, col =1, depth=0",
> "row=1l, col =1, depth=1"
>
>]]
> |

2.5.6 Stringification of Refer ences
Perl will stringify areferenceif you try to do anything string-like with it, such as print it.

ny $referent = 42;
my $reference = \$referent;
warn "reference is '$reference'"”;

> reference i s ' SCALAR(0x812e6ec)"

51 of 138

But perl will not alow you to create a string and attempt to turn it into areference.
ny $reference = ' SCALAR(0x812e6ec)’
ny $val ue = $$ref erence;

> Can't use string ("SCALAR(Ox812e6ec)") as
> a SCALAR ref while "strict refs"” in use

Turning strict off only gives you undef.

no strict;

ny $reference = ' SCALAR(O0x812e6ec)"

my $val ue = $$reference;

warn "val ue not defined" unl ess(defined($val ue));
warn "value is '$value'\n";

> val ue not defined _ _
> Use of uninitialized value in concatenation

Because areference is always a string that looks something like "SCALAR(0x812e6ec)",
it will evaluate true when treated as a boolean, even if the value to which it pointsis false.

2.5.7 Theref() function

The ref() function takes a scalar and returns a string indicating what kind of referent the
scalar isreferencing. If the scalar is not areference, ref() returns false (an empty string).

ny $tenp = \42;
ny $string = ref ($tenp);
warn "string is '$string' ";
> string is ' SCALAR

Here we call ref() on severa types of variable:
sub what _is_it

{
my ($scal ar):@,
my $string = ref($scalar);
| print "string is "$string'\n";
what is it(\'hello);
what _is_it([1,2,3])
what is it({cats=>2});
what _is it(42);
> string i s ' SCALAR
> string i s ' ARRAY
> string is ' HASH
> string is "'

52 of 138

Note that thisis like stringification of areference except without the address being part of
the string. Instead of SCALAR(0x812e6ec), itsjust SCALAR. Also note that if you
stringify a non-reference, you get the scalar value. But if you call ref() on anon-
reference, you get an empty string, which is always false.

3 Control Flow

Standard statements get executed in sequential order in perl.

ny $nane = 'John Smith';
ny $greeting = "Hello, $nanme\n";
print $greeting;

Control flow statements allow you to alter the order of execution as the program is
running.

i f($pric{e == 0)

print "Free Beer!\n";

}

53 of 138

Perl supports the following control flow structures:

LABEL is an optional nanme that identifies the
control flow structure. It is a bareword identifier
followed by a colon. exanple==> M_NAME:

BLOCK ==> zero or nore statements contai ned
in curly braces { print "hi"; }
LABEL BLOCK

LABEL BLOCK conti nue BLOCK

HHEHFHHHFH

BOOL ==> bool ean (see bool ean section above)

i f (BOOL) BLOCK

if (BOOL) BLOCK el se BLOCK

if (BOOL) BLOCK elsif (BOOL) BLOCK elsif ()...

if (BOOL) BLOCK elsif (BOOL) BLOCK ... else BLOCK

unl ess (BOOL) BLOCK
unl ess (BOOL) BLOCK el se BLOCK
unl ess (BOOL) BLOCK elsif (BOOL) BLOCK elsif ()...

unl ess (BOOL) BLOCK elsif (BOOL) BLOCK ... else BLOCK
LABEL while (BOOL) BLOCK
LABEL while (BOOL) BLOCK continue BLOCK

LABEL unti| (BOOL) BLOCK
LABEL until (BOOL) BLOCK continue BLOCK

INIT, TEST, CONT are all expressions

INT is an initialization expression

INT is evaluated once prior to |loop entry

TEST is BOOLEAN expression that controls | oop exit

TEST is evaluated each tine after BLOCK i s executed
CONT is a continuation expression

CONT is evaluated each tine TEST is eval uated TRUE
LABEL for (INIT; TEST, CONT) BLOCK

LIST is a list of scalars,

see arrays and list context sections later in text
LABEL foreach (LIST) BLOCK

LABEL foreach VAR (LI ST) BLOCK

LABEL foreach VAR (LI ST) BLOCK continue BLOCK

3.1 Labels
Labels are dways optional. A label isan identifier followed by a colon.
A label isused to giveits associated control flow structure a name.

54 of 138

InsideaBLOCK of acontrol flow structure, you can cal

next ;
| ast ;
redo;

If the structure hasa LABEL, you can call

next LABEL;
| ast LABEL;
redo LABEL;

If no label isgiven to next, last, or redo, then the command will operate on the inner-most
control structure. If alabel is given, then the command will operate on the control
structure given.

3.2last LABEL;

The last command goes to the end of the entire control structure. It does not execute any
continue block if one exists.

3.3 next LABEL;

The next command skips the remaining BLOCK. if there is a continue block, execution
resumes there. After the continue block finishes, or if no continue block exists, execution
starts the next iteration of the control construct if it isaloop construct.
3.4redoLABEL;

The redo command skips the remaining BLOCK. It does not execute any continue block
(evenif it exists). Execution then resumes at the start of the control structure without
evaluating the conditional again.

4 Packages and Namespaces and L exical Scoping

4.1 Package Declaration

Perl has a package declaration statement that looks like this:
package NAMESPACE;

This package declaration indicates that the rest of the enclosing block, subroutine, eval,
or file belongs to the namespace given by NAMESPACE.

55 of 138

The standard warnings, strictness, and Data::Dumper are attached to the namespace in
which they were turned on with "use warnings;" etc. Anytime you declare a new package
namespace, you will want to "use" these again.

package SonmeQ her Package;
use warnings; use strict; use Data::Dunper;

All perl scripts start with an implied declaration of:
package mai n;

Y ou can access package variables with the appropriate sigil, followed by the package
name, followed by a double colon, followed by the variable name. Thisiscalled a
"package QUALIFIED" variable where the package nameis explicitely stated.

$package_t hi s:: age;

@t her _package: :refridgerator;

%package_t hat: : pets;

If you use an UNQUALIFIED variable in your code, perl assumesit isin the the most
recently declared package namespace that was declared.

When you have strict-ness turned on, there are two waysto create and use package
variables:

1) Use the fully package qualified name everywhere in your code:

can use variable without declaring it with 'ny'
$sone_package: : answer =42;
warn "The value is '$sonme_package: :answer'\n";

4.2 Declaring Package Variables With our

2) Use"our" to declare the variable.

package thi s _package;
our $nane='John';
warn "nanme is ' $nanme'";

Using "our" isthe preferred method. Y ou must have perl 5.6.0 or later for "our"
declarations.

The difference between the two methods is that always using package qualified variable
names means you do NOT have to declare the package you arein. Y ou can create
variablesin ANY namespace you want, without ever having to declare the namespace
explicitely. You can even declare variables in someone el se's package namespace. There
isno restrictionsin perl that prevent you from doing this.

56 of 138

To encourage programmers to play nice with each other's namespaces, the "our" function
was created. Declaring a variable with "our" will create the variable in the current
namespace. If the namespace is other than "main", then you will need to declare the
package namespace explicitely. However, once a package variable is declared with "our",
the fully package qualified nameis NOT required, and you can refer to the variable just
on its variable name, as example (2) above refers to the $name package variable.

We could also access the Hogs variables using afully package qualified name. We do not
HAVE to use the "our" shortcut even if we used it to declareit. The "our” declarationisa
shorthand for declaring a package variable. Once the package variable exists, we can
accessit any way we wish.

package Hogs;

our $speak = 'oink';
print "Hogs::speak is ' $Hogs: : speak' \ n";
> Hogs: : speak I's 'oink'

4.3 Package Variablesinside a L exical Scope

When you declare a package inside a code block, that package namespace declaration
remains in effect until the end of the block, at which time, the package namespace reverts
to the previous namespace.

package Hogs;

our $speak = 'oink';

{ # START OF CODE BLOCK
package Heifers;
our $speak = 'noo’;

} # END OF CODE BLOCK

print "speak is '$speak'\n";
> speak is 'oink'

The Heifers namespace still exists, as does all the variables that were declared in that
namespace. Its just that outside the code block, the "our Heifers;" declaration has worn
off, and we now have to use a fully package qualified name to get to the variablesin
Heifers package. This "wearing off" is afunction of the code block being a"lexical
scope” and a package declaration only lasts to the end of the current lexical scope.

57 of 138

The package variables declared inside the code block SURVIVE after the code block
ends.

{
package Heifers;

our $speak = 'noo';
}
print "Heifers::speak is '$Heifers::speak'\n";

> Heifers::speak is 'noo'

4.4 L exical Scope

Lexical refersto words or text. A lexical scope exists while execution takes place inside
of aparticular chunk of source code. In the above examples, the "package Heifers;" only
existsinside the curly braces of the source code. Outside those curly braces, the package
declaration has gone out of scope, which isatechnical way of saying its "worn off".

Scope refersto vision, as in telescope. Within alexical scope, things that have lexical
limitations (such as a package declaration) are only "visible" inside that lexical space.

So "lexical scope” refersto anything that is visible or has an effect only withing a certain
boundary of the source text or source code. The easiest way to demonstrate lexical
scoping is lexical variables, and to show how lexical variables differ from "our"
variables.

45 Lexical Variables

Lexical variables declared inside a lexical scope do not survive outside the lexical scope.

no war ni ngs;
no strict;

{
}

warn "speak is '$speak'\n";

ny $speak = ' noo';

> speak is

The lexical variable "$speak” goes out of scope at the end of the code block (at the "}"
character), so it does not exist when we try to print it out after the block. We had to turn
warnings and strict off just to get it to compile because with warnings and strict on, perl
will know $speak does not exist when you attempt to print it, so it will throw an
exception and quit.

58 of 138

Lexically scoped variables have three main features:

1) Lexical variables do not belong to any package namespace, so you cannot
prefix them with a package name:
no war ni ngs;

package main; _
my $cnt="1 amjust a lexical';

warn "main::cnt is "$main::cnt'";

> main::cnt is

2) Lexical variables are only directly accessible from the point where they
are declared to the end of the nearest enclosing block, subroutine, eval, or
file.

no strict;

{
)

warn "sone_lex is '$some_lex'";

ny $sone _lex = '1 amlex';

> sone_lex is

3) Lexical variables are subject to "garbage collection” at the end of scope.

If nothing isusing alexical variable at the end of scope, perl will remove it
from its memory. Every time avariable is declared with "my", it is created
dynamically, during execution. The location of the variable will change each
time. Note in the example below, we create a new $lex_var each time
through the loop, and $lex_var is at a different address each time.

nmy @upboar d;
for (1 .. 5)

nmy $l ex var = 'canned goods';
ny $lex_ref = \$lex var;
push(@upboard, $lex ref);
print "$lex_ref\n";

}

SCALAR(0x812e770)
SCALAR(0x812e6c8)
SCALAR(0x812e6¢€0)
SCALAR(0x81624c8)
SCALAR(0x814cf 64)

VVVVYV

Lexical variables are just plain good. They generaly keep you from stepping on someone
else'stoes. They also keep your data more private than a package variable. Package
variables are permanent, never go out of scope, never get garbage collected, and are
accessible from anyone's script.

59 of 138

4.6 Garbage Collection

When alexical variable goes out of scope, perl will check to seeif anyoneis using that
variable, and if no oneisusing it, perl will delete that variable and free up memory.

The freed up memory is not returned to the system, rather the freed up memory is used
for possible declarations of new lexically scoped variables that could be declared later in
the program.

This means that your program will never get smaller because of lexical variables going of
of scope. Once the memory is alocated for perl, it remains under perl's jurisdiction. But
perl can use garbage collected space for other lexical variables.

If alexical variableis areferent to another variable, then the lexical will not be garbage
collected when it goes out of scope.

no strict;
my $referring var;
{
ny $sone_lex = '1 amlex';

$referring_var=\$sone_| ex;

}

warn "some_lex is '$sone_lex"'"; _
warn "referring var refers to '$$referring_var'";

> sonme_lex is "'
> referring var refers to 'l am|ex'

When the lexical $some_lex went out of scope, we could no longer accessit directly. But
since $referring_var is areference to $some_lex, then $some_lex was never garbage
collected, and it retained its value of "l am lex". The datain $some _|ex was still
accessible through referring_var.

4.6.1 Reference Count Garbage Collection

Perl uses reference count based garbage collection. It is rudimentary reference counting,
so circular references will not get collected even if nothing points to the circle. The
example below shows two variables that refer to each other but nothing refersto the two
variables. Perl will not garbage collect these variables even though they are completely
inaccessible by the end of the code block.

ny ($first, $l as

($first, $l ast) %

t
} (\$last,\$first);

4.6.2 Garbage Collection and Subroutines

Garbage collection does not rely strictly on referencesto avariable to determine if it
should be garbage collected. If a subroutine uses alexical variable, then that variable will
not be garbage collected as long as the subroutine exists.

60 of 138

Subroutines that use alexical variable declared outside of the subroutine declaration are
called "CLOSURES'.

In the example below, the lexical variable, $cnt, is declared inside a code block and
would normally get garbage collected at the end of the block. However, two subroutines
are declared in that same code block that use $cnt, so $cnt is not garbage collected. Since
$ent goes out of scope, the only things that can access it after the code block are the
subroutines. Note that areference to $cnt is never taken, however perl knowsthat $cnt is
needed by the subroutines and therefore keeps it around.

{
ny $cnt =0;
sub inc{$cnt++; print "cnt is '$cnt'\n";}
} sub dec{$cnt--; print "cnt is '$cnt'\n";}
I nc;
i nc;
i nc;
dec;
dec;
i nc;
>cnt is '1
>cnt is '2
>cnt is '3
>cnt is '2
>cnt is '1
>cnt is '2

Subroutine names are like names of package variables. The subroutine gets placed in the
current declared package namespace. Therefore, named subroutines are like package
variablesin that, once declared, they never go out of scope or get garbage collected.

4.7 Package Variables Revisited

Package variables are not evil, they are just global variables, and they inherit all the
possible problems associated with using global variables in your code.

In the event you DO end up using a package variable in your code, they do have some
advantages. They are global, which means they can be a convenient way for several
different blocks of perl code to talk amongst themselves using an agreed upon global
variable as their channel.

61 of 138

Imagine several subroutines across several files that all want to check aglobal variable:
$Development::Verbose. If this variable istrue, these subroutines print detailed
information. If it isfalse, these subroutines print little or no information.

package Devel opnent;
our $Verbose=1;
sub Conpile

{
i f ($Devel opnent: : Ver bose)
{ print "conmpiling\n"; } }

sub Link
i f ($Devel opnent: : Ver bose)
{ print "linking\n"; } }
sub Run {
i f ($Devel opnent: : Ver bose)
{ print "running\n"; } }
Compi | e;
Li nk;
Run;
> conpi | i ng
> |inking
> runni ng

The three subroutines could be in different files, in different package namespaces, and
they could all access the $Development::Verbose variable and act accordingly.

4.8 Calling local () on Package Variables

When working with global variables, there are times when you want to save the current
value of the global variable, set it to anew and temporary value, execute some foreign
code that will access this global, and then set the global back to what it was.

62 of 138

Continuing the previous example, say we wish to create a RunSilent subroutine that
stores $Development::Verbose in atemp variable, calls the original Run routine, and then

sets $Development::Verbose back to its original value.

package Devel opnent;
our $Verbose=1;

sub Conpile {
i f ($Devel opnent: : Ver bose)
{ print "conpiling\n";
sub Link
i f ($Devel opnent: : Ver bose)
{ print "linking\n"; }
sub Run {
i f ($Devel opnent: : Ver bose)
{ print "running\n"; }
sub RunSilent {

ny $tenp = $Devel opnent: : Ver bose;

$Devel opnent : : Ver bose=0;
Run;

$Devel opnent : : Ver bose=$t enp; }

This can also be accomplished with the "local ()" function. The local function takes a
package variable, saves off the original value, allows you to assign atemp valueto it.
That new value is seen by anyone accessing the variable. And at the end of the lexical

scope in which local() was called, the original value for the variable is returned.

The RunSilent subroutine could be written like this:

sub RunSilent {
| ocal ($Devel opnent: : Ver bose) =0;
Run; }

Perl originally started with nothing but package variables. The "my" lexical variables
were not introduced until perl version 4. So to deal with all the package variables, perl
was given the local () function. Local isaso agood way to create atemporary variable

and make sure you dont step on someone else's variable of the same name.

63 of 138

5 Subroutines

Perl allows you to declare named subroutines and anonymous subroutines, similar to the
way you can declare named variables and anonymous variables.

5.1 Subroutine Sigil

Subroutines use the ampersand (&) astheir sigil. But whilethe sigils for scalars, arrays,
and hashes are mandatory, the sigil for subroutinesis optional.

5.2 Named Subroutines

Below is the named subroutine declaration syntax:
sub NAME BLOCK

NAME can be any valid perl identifier.
BLOCK isacode block enclosed in parenthesis.

The NAME of the subroutine is placed in the current package namespace, in the same
way "our" variables go into the current package namespace. So once a named subroutine
is declared, you may accessit with just NAME if you are in the correct package, or with a
fully package qualified name if you are outside the package. And you can use the

optional ampersand sigil in either case.

package M/Ar ea;

sub Ping {print "ping\n";}
Pi ng;

&Pi ng;
My Ar ea: : Pi ng;

&WAr ea: : Pi ng;

> pi ng
> ping
> ping
> ping

64 of 138

Once the current package declaration changes, you MUST use afully package qualified
subroutine name to call the subroutine.

package M/Area;
sub Ping {print "ping\n";}

package Your Area;

M/ Ar ea: : Pi ng;

&WAr ea: : Pi ng;

&Ping; # error, looking in current package YourArea

> ping
> ping
> Undefi ned subroutine &YourArea:: Ping

5.3 Anonymous Subroutines
Below is the anonymous subroutine declaration syntax:

sub BLOCK

Thiswill return a code reference, similar to how [] returns an array reference, and similar
to how {} returns a hash reference.

sub what _is_it

{
ny ($scal ar)=@;
ny $string = ref($scal ar);
| print "ref returned '$string \n";

ny $tenp = sub {print "Hello\n";};
what _is it($tenp);
> ref returned ' CODE

5.4 Data::Dumper and subroutines

The contents of the code block are invisible to anything outside the code block. For this
reason, things like Data::Dumper cannot look inside the code block and show you the
actual code. Instead it does not even try and just gives you a place holder that returns a
dummy string.

ny $tenp = sub {print "Hello\n";};

print Dunper $tenp;

> $VARL = sub { "DUMW" };

65 of 138

5.5 Passing Argumentsto/from a Subroutine

Any values you want to pass to a subroutine get put in the parenthesis at the subroutine
call. For normal subroutines, all arguments go through the list context crushing machine
and get reduced to alist of scalars. The original containers are not known inside the
subroutine. The subroutine will not know if the list of scalarsit recieves came from
scalars, arrays, or hashes.

To avoid some of the list context crushing, a subroutine can be declared with a prototype,
which are discussed later.

5.6 Accessing Argumentsinside Subroutinesvia@ _

Inside the subroutine, the arguments are accessed via a specia array called @ _, since al
the arguments passed in were reduced to list context, these arguments fit nicely into an
array. The @ _array can be processed just like any other regular array. If the arguments
are fixed and known, the preferred way to extract them isto assign @ _to alist of scalars
with meaningful names.

sub conpare {

ny ($left,$right)=@;
return $l eft<=>%$ri ght;

}

The @ _array is"magical” inthat it isrealy alist of aliases for the original arguments
passed in. Therefore, assigning avalue to an element in @_ will change the value in the
origina variable that was passed into the subroutine call. Subroutine parameters are
effectively IN/OUT.

sub swap { (@) = reverse(@); }

ny $one = "1 am one";
ny $two = "I amtwo";
swap($one, $t wo) ;

warn "one is '$one'";
warn "two is '$two'"

>one is 'l amtwo
>tw is 'l am one'

Assigning to the entire @ _ array does not work, you have to assign to the individual
elements. If swap were defined like this, the variables $one and $two would remain
unchanged.

eft,$right)=@;

r{ry (3l
@ = ($right,S$left);

66 of 138

5.7 Der eferencing Code Refer ences

Dereferencing a code reference causes the subroutine to be called. A code reference can
be dereferenced by preceding it with an ampersand sigil or by using the arrow operator
and parenthesis "->()". The preferred way is to use the arrow operator with parens.

ny $tenp = sub {print "Hello\n";};

& $t enp};
&St enp;

$tenp->(); # preferred

5.8 Implied Arguments

When calling a subroutine with the "&" sigil prefix and no parenthesis, the current @ _
array getsimplicitely passed to the subroutine being called. This can cause subtly odd
behaviour if you are not expecting it.

sub second_| evel {
print Dunper \@;

sub first |evel {
using '& sigil and no parens.
doesn't look |like |I'm passing any paramns
but perl will pass @ 1nplicitely.
&second_| evel ;

}
first_level (1,2, 3);

> $VARL = [
11

2,
3

VVVYV

l;

Thisgeneraly is not a problem with named subroutines because you probably will not
usethe"&" sigil. However, when using code referernces, dereferencing using the "&"
may cause imlied arguments to be passed to the new subroutine. For this reason, the
arrow operator isthe preferred way to dereference a code reference.

$code ref->(); # pass nothing, no inplicit @
$code ref->(@); # explicitly pass @
$code ref->("one', 'two'); # pass new paraneters

67 of 138

5.9 Subroutine Return Value

Subroutines can return asingle value or alist of values. The return value can be explicit,
or it can be implied to be the last statement of the subroutine. An explicit return statement
isthe preferred approach if any return value is desired.

return a single scalar
sub ret _scal {
return "boo";

my $scal _var = ret_scal,;
print Dunper \$scal _var;

return a list of val ues
sub ret_arr {

return (1,2, 3);
}

ny @rr_var = ret_arr,;
print Dunper \@urr _var;

> $VARL = \' boo';
> $VARL = |

> 1,

> 2,

> 3

>] :

5.10 Returning False

The return value of a subroutine is often used within a boolean test. The problem is that
the subroutine needs to know if it is called in scalar context or array context.

Returning asimple "undef" value (or 0 or 0.0 or "") will work in scalar context, but in
array context, it will create an array with the first element set to undef. In boolean
context, an array with one or more elements is considered true.

A return statement by itself will return undef in scalar context and an empty listin list
context. Thisisthe preferred way to return false in a subroutine.

sub this_ is false {
return; # undef or enpty I|ist

}
ny $scal _var = this_ is fal se;
ny @rr_var = this_is _fal se;

68 of 138

5.11 Using the caller () Function in Subroutines

The caller() function can be used in a subroutine to find out information about where the
subroutine was called from and how it was called. Caller takes one argument that
indicates how far back in the call stack to get its information from. For information about
the current subroutine, use caller(0).

sub HowMasl Cal | ed {
ny @nfo = caller(0);
print Dunper \ @ nfo;

}
HowWas| Cal | ed;
[

"main',

"./test.pl',

13,

"mai n: : How\asl| Cal | ed' ,
11

undef ,

undef ,

undef ,

2,

" UUUUUUUUUUUU

l;

The caller() function returns alist of information in the following order

v
2
>
R
I

VVVVVVVVVYVYV

0 $package package namespace at tine of cal

1 $fil enane filenane where called occurred

2 $line i ne nunber in file where call occurred
3 $subroutine name of subroutine called

4 $hasar gs true if explicit argunments passed in

5 $wantarray |ist=1, scal ar=0, void=undef

6 $eval t ext eval uated text if an eval bl ock

7 $is_require true if created by "require" or "use"

8 $hints internal use only, disregard

9 $bi t mask internal use only, disregard

Note in the example above, | ran the codein afile called test.pl. The call occurred in
package main, the default package namespace, and it occurred at line 13 of thefile. The
package qualified name of the subroutine that was called was main::HowWasl Called.
The package qualified name must be given since you dont know what package is current
where the subroutine was called from, that information is hidden in lexical scope.

69 of 138

5.12 The caller () function and $wvantarray

The argument of interest is the $wantarray argument. This indicates what return valueis
expected of the subroutine from where it was called. The subroutine could have been
called in void context meaning the return value is thrown away. Or it could have been
called and the return value assigned to a scalar. Or it could have been called and the
return value assigned to alist of scalars.

{sub CheckMyWant Arr ay

my @nfo = caller(0);
nmy $wantarray = $info[5];
$want ar r ay=" undef
unl ess(defi ned($want array));
print "wantarray is '$wantarray'\n";

CheckMyWant Arr ay; # undef
ny $scal = CheckMyWant Array; # 0
ny @rr = CheckMyWant Array; # 1

> wantarray is 'undef’
> wantarray is '0'
> wantarray is "1

70 of 138

5.13 Using wantarray to Create Context Sensitive Subroutines

Y ou can use the wantarray variable from caller() to create a subroutine that is sensitive to
the context in which it was called.

sub ArrayProcessor {
ny @nfo = caller(0);
ny $wantarray = $info[5];
return unl ess(defl ned($vvant array));
i f($wantarray)

{ réeturn @; }
{ return scalar(@); }

el se
my @rr=gw al pha bravo charlie);
ArrayProcessor(@rr);

ny $scal = ArrayProcessor(@rr); # 3
ny @et_arr = ArrayProcessor(@rr); # alpha ...

print "scal is '$scal'\n";
print Dunper \@et _arr;

> scal is '3

>$VARL = |

> "al pha',
> "bravo',
> "charlie'
> |

6 Compiling and I nter preting

When perl works on your source code, it will always be in one of two modes: compiling
or interpreting. Perl has some hooksto allow access into these different cycles. They are
code blocks that are prefixed with BEGIN, CHECK, INIT, and END.

Compiling: translating the source text into machine usable internal format.

Interpreting: executing the machine usable, internal format.

The BEGIN block isimmediate.

BEGIN -> execute block as soon asit is compiled, even before compiling anything else.

71 of 138

The other blocks, including normal code, do not execute until after the entire program has
been compiled. When anything other than aBEGIN block is encountered, they are
compiled and scheduled for exeuction, but perl continues compiling the rest of the
program.

CHECK -> Schedule these blocks for execution after all source code has been compiled.
INIT-> Schedule these blocks for execution after the CHECK blocks have executed.
normal code -> Schedule normal code to execute after all INIT blocks.

END -> Schedule for execution after normal code has compl eted.

Multiple BEGIN blocks are executed immediately in NORMAL declaration order.

Multiple CHECK blocks are scheduled to execute in REVERSE declaration order.

Multiple INIT blocks are scheduled to execute in NORMAL declaration order.

Multiple ENDblocks are scheduled to execute in REV ERSE dec