
Programmer’s Reference
version 0.34

gaffie@users.sourceforge.net

Class::STL::Containers

Programmer’s Reference Class::STL::Containers

18 January 2007 11:21

Table of Contents
Class::STL::Containers

NAME 1
SYNOPSIS 1
DESCRIPTION 2

Containers 2
Iterators 2
Algorithms 2
Utilities 2
Differences From C++/STL 3

Iterators and the end() function 3
The tree Container 3
Utilities matches, matches_ic functions 3
Container append function 3
The clone function 3
The Container to_array function 3
Container element type 3

CLASS Class::STL::ClassMembers 3
Data Member Accessor Get/Put Function 3
Class members_init() Function 3
Class clone() Function 3
Class swap() Function 4
Class members() Function 4
Class members_local() Function 4
Class::STL::ClassMembers::DataMember 4
Class::STL::ClassMembers::Constructor 4
Class::STL::ClassMembers::SingletonConstructor 4
Example 4

CLASS Class::STL::Containers 4
Exports 4

CLASS Class::STL::Containers::Abstract 5
Extends Class::STL::Element 5

new 5
clone 5
factory 5
erase 5
insert 5
pop 6
push 6
clear 6
begin 6
end 6
rbegin 6
rend 6
size 6
empty 6
to_array 6
eq 6
ne 7
operator +, operator += 7
operator == 7
operator != 7

CLASS Class::STL::Containers::List 7
Extends Class::STL::Containers::Deque 7

reverse 7

18 January 2007 11:21 i

Class::STL::Containers Table of Contents

sort 7
Example 7

CLASS Class::STL::Containers::Vector 8
Extends Class::STL::Containers::Abstract 8

push_back 8
pop_back 8
back 8
front 8
at 8

CLASS Class::STL::Containers::Deque 8
Extends Class::STL::Containers::Vector 8

push_front 8
pop_front 8

CLASS Class::STL::Containers::Queue 8
Extends Class::STL::Containers::Abstract 9

push 9
pop 9
back 9
front 9

CLASS Class::STL::Containers::Stack 9
Extends Class::STL::Containers::Abstract 9

push 9
pop 9
top 9

CLASS Class::STL::Containers::Tree 9
Extends Class::STL::Containers::Deque 9

to_array 9
Examples 10

CLASS Class::STL::Containers::PriorityQueue 10
Extends Class::STL::Containers::Vector 10
Element Type Class::STL::Element::Priority 10

push 10
pop 10
top 10
refresh 10

CLASS Class::STL::Algorithms 10
Exports 10

for_each 11
transform 11
count 11
count_if 11
find 11
find_if 11
copy 11
copy_backward 11
remove 11
remove_if 11
remove_copy 12
remove_copy_if 12
replace 12
replace_if 12
replace_copy 12
replace_copy_if 12
generate 12
generate_n 12
fill 12
fill_n 12
equal 12
reverse 12

ii 18 January 2007 11:21

Table of Contents Class::STL::Containers

reverse_copy 12
rotate 12
rotate_copy 12
partition 12
stable_partition 12
min_element 12
max_element 13
unique 13
unique_copy 13
adjacent_find 13

Examples 13
CLASS Class::STL::Utilities 13

Exports 13
equal_to 13
not_equal_to 13
greater 13
greater_equal 13
less 14
less_equal 14
compare 14
matches 14
matches_ic 14
bind1st 14
bind2nd 14
mem_fun 14
ptr_fun 14
ptr_fun_binary 14
logical_and 14
logical_or 14
multiplies 14
divides 15
plus 15
minus 15
modulus. 15

CLASS Class::STL::Iterators 15
Exports 15

new 15
p_container 15
p_element 15
distance 15
advance 15
inserter 15
front_inserter 15
back_inserter 15
first 16
next 16
last 16
prev 16
at_end 16
eq 16
ne 16
lt 16
le 16
gt 16
ge 16
cmp 16

Examples 16
SEE ALSO 16
AUTHOR 16

18 January 2007 11:21 iii

Class::STL::Containers Table of Contents

COPYRIGHT AND LICENSE 16

iv 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

NAME
Class::STL::Containers - Perl extension for STL-like object management

SYNOPSIS

 use stl;

 # Deque container...
 my $d = stl::deque(qw(first second third fourth));
 $d->push_back($d->factory(’fifth’));
 $d->push_front($d->factory(’seventh’));
 $d->pop_front(); # remove element at front.
 $d->pop_back(); # remove element at back.
 stl::for_each($d->begin(), $d->end(), ptr_fun(’::myprint’));

 sub myprint { print "Data:", @_, "\n"; }

 # Copy constructor...
 my $d_copy = stl::deque($d);

 # Algorithms -- find_if()
 print "Element ’second’ was ",
 stl::find_if($d->begin(), $d->end(), stl::bind1st(stl::equal_to(), ’second’))
 ? ’found’ : ’not found’, "\n";

 # Algorithms -- count_if()
 print "Number of elements matching /o/ = ",
 stl::count_if($d->begin(), $d->end(), stl::bind2nd(stl::matches(), ’o’)),

"\n"; # prints ’2’ -- matches ’second’ and ’fourth’

 # Algorithms -- transform()
 stl::transform($d->begin(), $d->end(), $d2->begin(), stl::ptr_fun(’ucfirst’));
 stl::transform($d->begin(), $d->end(), $d2->begin(), $d3->begin(), stl::ptr_fun_binary(’::mybfun’));
 sub mybfun { return $_[0] . ’-’ . $_[1]; }

 # Function Adaptors -- bind1st
 stl::remove_if($v->begin(), $v->end(), stl::bind1st(stl::equal_to(), $v->back()));
 # remove element equal to back() -- ie remove last element.
 stl::remove_if($v->begin(), $v->end(), stl::bind2nd(stl::matches(), ’^fi’));
 # remove all elements that match reg-ex ’^fi’

 # Sort list according to elements cmp() function
 $v->sort();

 # Queue containers -- FIFO
 my $v = stl::queue(qw(first second third fourth fifth));
 print ’Back:’, $v->back()->data(), "\n" # Back:fifth
 print ’Front:’, $v->front()->data(), "\n" # Front:first
 $v->pop(); # pop element first in
 $v->push($v->factory(’sixth’)), "\n"
 print ’Back:’, $v->back()->data(), "\n" # Back:sixth
 print ’Front:’, $v->front()->data(), "\n" # Front:second

 # Iterators
 for (my $i = $v->begin(); !$i->at_end(); ++$i)
 {

print "Data:", $i->p_element()->data();
 }

 # Iterators -- reverse_iterator
 my $ri = stl::reverse_iterator($v->iter())->first();
 while (!$ri->at_end())
 {

print "Data:", $ri->p_element()->data();
++$ri;

 }

 # Inserters
 my $three2one = stl::list(qw(3 2 1));
 my $four2six = stl::list(qw(4 5 6));
 my $seven2nine = stl::list(qw(7 8 9));
 my $result = stl::list();
 stl::copy($three2one->begin(), $three2one->end(), stl::front_inserter($result));
 stl::copy($seven2nine->begin(), $seven2nine->end(), stl::back_inserter($result));
 my $iseven = stl::find($result->begin(), $result->end(), 7);
 stl::copy($four2six->begin(), $four2six->end(), stl::inserter($result, $iseven));
 # $result now contains (1, 2, 3, 4, 5, 6, 7, 8, 9);

 # Vector container...
 my $v = stl::vector(qw(first second third fourth fifth));

18 January 2007 11:21 1

Class::STL::Containers Programmer’s Reference

 my $e = $v->at(0); # return pointer to first element.
 print ’Element-0:’, $e->data(), "\n"; # Element-0:first
 $e = $v->at($v->size()-1); # return pointer to last element.
 print ’Element-last:’, $e->data(), "\n"; # Element-last:fifth
 $e = $v->at(2); # return pointer to 3rd element (idx=2).
 print ’Element-2:’, $e->data(), "\n"; # Element-2:third

 # Priority Queue
 my $p = stl::priority_queue();
 $p->push($p->factory(priority => 10, data => ’ten’));
 $p->push($p->factory(priority => 2, data => ’two’));
 $p->push($p->factory(priority => 12, data => ’twelve’));
 $p->push($p->factory(priority => 3, data => ’three’));
 $p->push($p->factory(priority => 11, data => ’eleven’));
 $p->push($p->factory(priority => 1, data => ’one’));
 $p->push($p->factory(priority => 1, data => ’one-2’));
 $p->push($p->factory(priority => 12, data => ’twelve-2’));
 $p->push($p->factory(priority => 20, data => ’twenty’), $p->factory(priority => 0, data => ’zero’));
 print "\$p->size()=", $p->size(), "\n";
 print "\$p->top():", $p->top(), "\n";
 $p->top()->priority(7); # change priority for top element.
 $p->refresh(); # refresh required after priority change.
 $p->pop(); # remove element with highest priority.
 print "\$p->top():", $p->top(), "\n";

 # Clone $d container into $d1...
 my $d1 = $d->clone();

 my $d2 = stl::deque(qw(sixth seventh eight));

 # Append $d container to end of $d2 container...
 $d2 += $d;

 # DataMembers -- Class builder helper...
 {
 package MyClass;
 use Class::STL::ClassMembers (
 qw(attrib1 attrib2), # data members
 Class::STL::ClassMembers::DataMember->new(
 name => ’attrib3’, default => ’100’, validate => ’^\d+$’), # data member with attributes
 Class::STL::ClassMembers::DataMember->new(
 name => ’attrib4’, default => ’med’, validate => ’^(high|med|low)$’),
);
 use Class::STL::ClassMembers::Constructor; # produce class new() function
 }
 my $cl = MyClass->new(attrib1 => ’hello’, attrib2 => ’world’);
 print $cl->attrib1(), " ", $cl->attrib2(), "\n"; # ’hello world’
 $cl->attrib1(ucfirst($cl->attrib1));
 $cl->attrib2(ucfirst($cl->attrib2));
 print $cl->attrib1(), " ", $cl->attrib2(), "\n"; # ’Hello World’
 $cl->attrib4(’avg’); # Causes progam to die with ’** Function attrib2 value failed validation...’

DESCRIPTION
This package provides a framework for rapid Object Oriented Perl application development. It consists of
a number of base classes that are similar to the C++/STL framework, plus a number of helper classes
which provide the glue to transparently generate common functions, and will enable you to put your Perl
application together very quickly.

The STL functionality provided consists of containers, algorithms, utilities and iterators as follows:
Containers
vector, list, deque, queue, priority_queue, stack, tree.

Iterators
iterator, bidirectional_iterator, reverse_iterator, forward_iterator.

Algorithms
find, find_if, for_each, transform, count, count_if, copy, copy_backward, remove, remove_if,
remove_copy, remove_copy_if, replace, replace_if, replace_copy, replace_copy_if.

Utilities
equal_to, not_equal_to, greater, greater_equal, less, less_equal, compare, bind1st, bind2nd, mem_fun,
ptr_fun, ptr_fun_binary, matches, matches_ic, logical_and, logical_or, multiplies, divides, plus, minus,
modulus.

2 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

Differences From C++/STL
Most of the functions have the same arguments and return types as their STL equivalent. There are some
differences though between the C++/STL and this implementation:

Iterators and the end() function
An iterator object points to a numeric position within the container, and not to an element. If new elements
are inserted to, or removed from, a postion preceding the iterator, then the iterator will point to the same
position but to a different element.

The end function will return a newly constructed iterator object which will point to the last element within
the container, unlike the C++/STL equivalent which points to after the last element.

The tree Container
This container provides a hierarchical tree structure. Each element within a tree container can be either a
simple element or another container object. The algorithms and overridden to_array functions will
traverse the tree and pocess all element nodes within the tree.

Utilities matches, matches_ic functions
These utilities provide unary functions for regular expression matching. The first or second argument will
be a regular expression string. The match_ic provides case insensitive matching.

Container append function
This function and the overridden +, += operators will combine the two containers together.

The clone function
This function returns a newly constructed object that is a copy of its caller object.

The Container to_array function
This function will return an array consisting of all element objects within the container.

Container element type
All containers contain collections of objects which are of type Class::STL::Element, or classes derived
from this type. The container classes are themselves, ultimately, derived from this element type.

CLASS Class::STL::ClassMembers
These helper classes can be used to generate code for various basic class functions. This module
requires an import list consisting of target data member names or
Class::STL::ClassMembers::DataMember objects. When using ClassMembers ALL data members
should be included in order for the generated clone and swap functions to function correctly. The
constructor function code can be produces as well by using the package
Class::STL::ClassMembers::Constructor, or Class::STL::ClassMembers::SingletonConstructor to
create a singleton class type.

The following target member functions will be generated and made available to the class:

Data Member Accessor Get/Put Function
This function will have the same name as the data member and should be used to set or get the value for
the data member. Pass the value as the argument when setting the value for a data member. For
comlpex data members with a validate attribute, a validation check will be performed when attempting to
set the member value by matching the value against the validate regular expression string.

Class members_init() Function
This function should be called in the target class‘s new function after $self has been blessed. It will
perform the necessary data members initialisation.

Class clone() Function

18 January 2007 11:21 3

Class::STL::Containers Programmer’s Reference

This function will construct and return an object containing a copy of the caller object.

Class swap() Function
This function requires one argument consisting of an object of the same type as the caller. It will swap the
caller object with this other object.

Class members() Function
This function will return a pointer to an anonymous hash containing the data member names (as the key)
and data member attibutes array list consisting of default and validate attribute fields in that order. All
data members, including inherited members are contained in this hash.

Class members_local() Function
Same as members function except that only the data members local to the class are contained in the
hash returned.

Class::STL::ClassMembers::DataMember
For more complex data members, this class may be used to provide additional information about the
member. This information consist of: name, default, and validate. The name attribute contains the
member name; the default attribute contains a default value for the member when initialised; the validate
attribute consists of a regular expression string that will be used to validate the member value by
matching it to this regex string.

Class::STL::ClassMembers::Constructor
The constructor function with the name new() will be produced for a package that uses this module. It is
recomended that this constructor is produced for any class (package) that uses the ClassMembers
package to produce the data members. This will ensure that the correct calls are done during
construction and copy-construction of an object. This constructor will make a call to the static user
member function new_extra if it exists in the calling class. The new_extra function will have the object
reference passed as the first argument.

Class::STL::ClassMembers::SingletonConstructor
Use this package to produce a singleton class. This constructor will ensure that only one instance of this
class will be constructed.

Example

 {
 package MyClass;
 use Class::STL::ClassMembers (
 qw(attrib1 attrib2),
 Class::STL::ClassMembers::DataMember->new(
 name => ’attrib3’, default => ’100’, validate => ’^\d+$’),
 Class::STL::ClassMembers::DataMember->new(
 name => ’attrib4’, default => ’med’, validate => ’^(high|med|low)$’),
);
 use Class::STL::ClassMembers::Constructor; # produce class new() function
 }
 my $cl = MyClass->new(attrib1 => ’hello’, attrib2 => ’world’);
 print $cl->attrib1(), " ", $cl->attrib2(), "\n"; # ’hello world’
 $cl->attrib1(ucfirst($cl->attrib1));
 $cl->attrib2(ucfirst($cl->attrib2));
 print $cl->attrib1(), " ", $cl->attrib2(), "\n"; # ’Hello World’
 $cl->attrib4(’avg’); # Causes progam to die with ’** Function attrib2 value failed validation...’

CLASS Class::STL::Containers

Exports
vector, list, deque, queue, priority_queue, stack, tree.

4 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

CLASS Class::STL::Containers::Abstract
This is the abstract base class for all other container classes. Objects should not be constructed directly
from this class, but from any of the derived container classes. Common functions are documented here.

Extends Class::STL::Element
new

container-ref new ([named-argument-list]);
container-ref new (container-ref);
container-ref new (element [, ...]);
container-ref new (iterator-start [, iterator-finish]);
container-ref new (raw-data [, ...]);

The new function constructs an object for this class and returns a blessed reference to this object.
All forms accept an optional hash containing any of the following named arguments: element_type.
The element_type defines the class type of element objects that the container will hold.
element_type will default to Class::STL::Element if not specified; when specified, the type must be
derived from Class::STL::Element.

The second form is a copy constructor. It requires another container reference as the argument, and
will return a copy of this container.

The third form requires one or more element refs as arguments. These elements will be copied into
the newly constructed container.

The fourth form requires one start iterator and an optional finish iterator. All the element objects
with, and including, the start and finish (or end if not specified) positions will be copied into the newly
constructed container.

The fifth form accepts a list of raw data values. Each of these values will be stored inside a
Class::STL::Element object constructed by the container‘s factory function, with the element‘s data
member containing the raw data value.

clone
Returns a newly constructed object which is identical to the calling (this) object.

factory
element-ref factory (%attributes);
The factory function constructs a new element object and returns a reference to this. The type of
object created is as specified by the element_type container attribute. The attributes argument
consists of a hash and is passed on to the element class new function. Override this function if you
want to avoid the ‘eval’ call.

erase
iterator erase (iterator-start [, iterator-finish]);
The erase function requires one starting iterator and an optional finish iterator as arguments. It will
delete all the elements in the container within, and including, these two iterator positions. The erase
funtion returns and iterator pointing to the element following the last deleted element.

insert
void insert (position, iterator-start, iterator-finish);
void insert (position, iterator-start);
void insert (position, element [, ...]);
void insert (position, size, element);
The first form will insert copies of elements within the iterator-start and iterator-finish positions
before position.

The second form will insert copies of elements within the iterator-start and end positions before
position

18 January 2007 11:21 5

Class::STL::Containers Programmer’s Reference

The third form will insert the element, or elements (not copies) before position.

The fourth form will insert size copies of element before position.

pop
void pop ();
The pop function requires no arguments. It will remove the element at the top of the container.

push
void push (element [, ...]);
The push function requires one or more arguments consisting of elements. This will append the
element(s) to the end of the container.

clear
void clear ();
This function will delete all the elements from the container.

begin
iterator-ref begin ();
The begin function constructs and returns a new iterator object which points to the front element
within the container.

end
iterator-ref end ();
The end function constructs and returns a new iterator object which points to the back element
within the container. **Note that, unlike C++/STL, this object points to the last element and not after
the last element.

rbegin
iterator-ref rbegin ();
The rbegin function is the reverse of the begin function — the newly constructed iterator points to
the last element.

rend
iterator-ref rend ();
The rend function is the reverse of the end function — the newly constructed iterator points to the
first element.

size
int size ();
The size function requires no arguments. It will return an integer value containing the number of
elements in the container.

empty
bool empty ();
This function returns ‘1’ if the container is empty (ie. contains no elements), and ‘0’ if the container
contains one or more elements.

to_array
array to_array ();
The to_array function returns an array containing the elements (references) from the container.

eq
bool eq (container-ref);
The eq function compares the elements in this container with the elements in the container refered
to by the argument container-ref. The elements are compared using the element eq function. The
function will return ‘1’ if both containers contain the same number of elements and all elements in
one container are equal to, and in the same order as, all elements in the container-ref container.

6 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

ne
bool ne (container-ref);
Inverse of eq function.

operator +, operator +=
Append containers.

operator ==
Containers equality comparison.

operator !=
Containers non-equality comparison.

CLASS Class::STL::Containers::List
A list container can have elements pushed and popped from both ends, and also inserted at any location.
Access to the elements is sequential.

Extends Class::STL::Containers::Deque
reverse

void reverse ();
The reverse function will alter the order of the elements in list by reversing their order.

sort
void sort ();
The sort function will alter the order of the elements in list by sorting the elements. Sorting is done
based on the elements cmp comparison function.

Example

 use stl;

 # Construct the list object:
 my $list = list(qw(first second third fourth fifth));

 # Display the number of elements in the list:
 print "Size:", $list->size(), "\n"; # Size:5

 # Reverse the order of elements in the list:
 $list->reverse();

 # Display the contents of the element at the front of the list:
 print ’Front:’, $list->front(), "\n";

 # Display the contents of the element at the back of the list:
 print ’Back:’, $list->back(), "\n";

 # Display the contents of all the elements in the list:
 for_each($list->begin(), $list->end(), MyPrint->new());

 # Return an array of all elements-refs:
 my @arr = $l1->to_array();

 # Delete all elements from list:
 $list->clear();

 print "Size:", $list->size(), "\n"; # Size:0
 print ’$list container is ’,
 $list->empty() ? ’empty’ : ’not empty’, "\n";

 # MyPrint Unary Function -- used in for_each() above...
 {
 package MyPrint;
 use base qw(Class::STL::Utilities::FunctionObject::UnaryFunction);
 sub function_operator
 {
 my $self = shift;

18 January 2007 11:21 7

Class::STL::Containers Programmer’s Reference

 my $arg = shift;
 print "Data:", $arg->data(), "\n";
 }
 }

CLASS Class::STL::Containers::Vector
A vector allows for random access to its elements via the at function.

Extends Class::STL::Containers::Abstract
push_back

void push_back (element [, ...]);
The push_back function requires one or more arguments consisting of elements. This will append
the element(s) to the end of the vector.

pop_back
void pop_back ();
The pop_back function requires no arguments. It will remove the element at the top of the vector.

back
element-ref back ();
The back function requires no arguments. It returns a reference to the element at the back of the
vector.

front
The front function requires no arguments. It returns a reference to the element at the front of the
vector.

at
element-ref at (index);
The at function requires an index argument. This function will return a reference to the element at
the location within the vector specified by the argument index.

CLASS Class::STL::Containers::Deque
A double-ended container. Elements can be pushed and popped at both ends.

Extends Class::STL::Containers::Vector
push_front

void push_front (element [, ...]);
The push_front function requires one or more arguments consisting of elements. This will insert the
element(s) to the front of the deque.

pop_front
void pop_front ();
The pop_front function requires no arguments. It will remove the element at the front of the deque.

CLASS Class::STL::Containers::Queue
A queue is a FIFO (first-in-first-out) container. Elements can be pushed at the back and popped from
the front.

8 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

Extends Class::STL::Containers::Abstract
push

void push (element [, ...]);
The push function requires one or more arguments consisting of elements. This will append the
element(s) to the back of the queue.

pop
void pop ();
The pop function requires no arguments. It will remove the element at the front of the queue. This is
the earliest inserted element.

back
element-ref back ();
The back function requires no arguments. It returns a reference to the element at the back of the
queue. This is the element last inserted.

front
element-ref front ();
The front function requires no arguments. It returns a reference to the element at the front of the
queue. This is the earliest inserted element.

CLASS Class::STL::Containers::Stack
A stack is a LIFO (last-in-first-out) container. Elements can be pushed at the top and popped from the
top.

Extends Class::STL::Containers::Abstract
push

void push (element [, ...]);
The push function requires one or more arguments consisting of elements. This will append the
element(s) to the top of the stack.

pop
void pop ();
The pop function requires no arguments. It will remove the element at the top of the stack. This is
the last inserted element.

top
element-ref top ();
The top function requires no arguments. It returns a reference to the element at the top of the stack.
This is the last inserted element.

CLASS Class::STL::Containers::Tree
A tree is a hierarchical structure. Each element within a tree container can be either a simple element or
another container object. The overridden to_array function will traverse the tree and return an array
consisting of all the nodes in the tree.

Extends Class::STL::Containers::Deque
to_array

array to_array ();
The overridden to_array function will traverse the tree and return an array consisting of all the
element nodes in the tree container.

18 January 2007 11:21 9

Class::STL::Containers Programmer’s Reference

Examples

 # Tree containers; construct two trees from
 # previously construced containers:
 my $t1 = tree($l1);
 my $t2 = tree($l2);

 # Construct a third tree:
 my $tree = tree();

 # Add other tree containers as elements to this tree:
 $tree->push_back($tree->factory($t1));
 $tree->push_back($tree->factory($t2));

 # Search for element (’pink’) in tree:
 if (my $f = find_if($tree->begin(), $tree->end(), bind1st(equal_to(), ’pink’))
 print "FOUND:", $f->data(), "\n";
 } else {
 print "’pink’ NOT FOUND", "\n";
 }

 # Traverse tree returning all element nodes:
 my @tarr = $tree->to_array();

CLASS Class::STL::Containers::PriorityQueue
A priority queue will maintain the order of the elements based on their priority, with highest priority
elements at the top of the container. Elements contained in a priority queue must be of the type, or
derived from, Class::STL::Element::Priority. This element type contains the attribute priority, and needs to
have its value set whenever an object of this element type is constructed.

Extends Class::STL::Containers::Vector

Element Type Class::STL::Element::Priority
push

void push (element [, ...]);
The push function requires one or more arguments consisting of elements. This will place the
element(s) in the queue according to their priority value.

pop
void pop_back ();
The pop function requires no arguments. It will remove the element with the highest priority.

top
element-ref top ();
The top function requires no arguments. It returns a reference to the element with the highest
priority.

refresh
void refresh ();
The refresh function should be called whenever the priority value for an element has been order.
This will update the ordering of the elements if required.

CLASS Class::STL::Algorithms
This module contains various algorithm functions.

Exports
remove_if, find_if, for_each, transform, count_if, find, count, copy, copy_backward, remove,
remove_copy, remove_copy_if, replace, replace_if, replace_copy, replace_copy_if, generate,
generate_n, fill, fill_n, equal, reverse, reverse_copy, rotate, rotate_copy, partition, stable_partition,
min_element, max_element, unique, unique_copy, adjacent_find

10 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

The Algorithms package consists of various static algorithm functions.
The unary-function / binary-function argument must be derived from
Class::STL::Utilities::FunctionObject::UnaryFunction and
Class::STL::Utilities::FunctionObject::BinaryFunction respectively. Standard utility functions are provided
in the Class::STL::Utilities module. A function object contains the function function_operator. This
function_operator function will, in turn, be called by the algorithm for each element traversed. The
algorithm will pass the element reference as the argument to the function_operator function.

for_each
void for_each (iterator-start, iterator-finish, unary-function);

The for_each function will traverse the container starting from iterator-start and ending at
iterator-finish and execute the unary-function with the element passed in as the argument.

transform
void transform (iterator-start, iterator-finish, iterator-result, unary-function);
void transform (iterator-start, iterator-finish, iterator-start2, iterator-result, binary-function);

The transform functions has two forms. The first form will traverse the container starting from
iterator-start and ending at iterator-finish and execute the unary-function with the element passed
in as the argument, producing iterator-result.

The second form will traverse two containers with the second one starting from iterator-start2. The
binary-function will be called for each pair of elements. The resulting elements will be placed in
iterator-result.

count
int count (iterator-start, iterator-finish, element-ref);

count_if
int count_if (iterator-start, iterator-finish, unary-function);

The count_if function will traverse the container starting from iterator-start and ending at
iterator-finish and return a count of the elements that evaluate to true by the unary-function.

find
iterator-ref find (iterator-start, iterator-finish, element-ref);

find_if
iterator-ref find_if (iterator-start, iterator-finish, unary-function);

The find_if function will traverse the container starting from iterator-start and ending at
iterator-finish and return an iterator pointing to the first element that evaluate to true by the
unary-function. If no elements evaluates to true then ‘o’ is returned.

copy
void copy (iterator-start, iterator-finish, iterator-result);

copy_backward
void copy_backward (iterator-start, iterator-finish, iterator-result);

remove
void remove (iterator-start, iterator-finish, element-ref);

remove_if
void remove_if (iterator-start, iterator-finish, unary-function);

18 January 2007 11:21 11

Class::STL::Containers Programmer’s Reference

The remove_if function will traverse the container starting from iterator-start and ending at
iterator-finish and remove the elements that evaluate to true by the unary-function.

remove_copy
void remove_copy (iterator-start, iterator-finish, iterator-result, element-ref);

remove_copy_if
void remove_copy_if (iterator-start, iterator-finish, iterator-result, unary-function);

replace
void replace (iterator-start, iterator-finish, old-element-ref, new-element-ref);

replace_if
void replace_if (iterator-start, iterator-finish, unary-function, new-element-ref);

replace_copy
void replace_copy (iterator-start, iterator-finish, iterator-result, old-element-ref, new-element-ref
);

replace_copy_if
void replace_copy_if (iterator-start, iterator-finish, iterator-result, unary-function,
new-element-ref);

generate
void generate (iterator-start, iterator-finish, generator-function);

generate_n
void generate_n (iterator-start, size, generator-function);

fill
void fill (iterator-start, iterator-finish, element-ref);

fill_n
void fill_n (iterator-start, size, element-ref);

equal
bool equal (iterator-start, iterator-finish, iterator-result [, binary-function]);

reverse
void reverse (iterator-start, iterator-finish);

reverse_copy
void reverse_copy (iterator-start, iterator-finish, iterator-result);

rotate
void rotate (iterator-start, iterator-mid, iterator-finish);

rotate_copy
void rotate_copy (iterator-start, iterator-mid, iterator-finish, iterator-result);

partition
void partition (iterator-start, iterator-finish, [, unary-predicate]);

stable_partition
void stable_partition (iterator-start, iterator-finish, [, unary-predicate]);

min_element

12 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

iterator min_element (iterator-start, iterator-mid [, binary-function]);

max_element
iterator max_element (iterator-start, iterator-mid [, binary-function]);

unique
iterator unique (iterator-start, iterator-finish, [, binary-function]);

unique_copy
iterator unique_copy (iterator-start, iterator-finish, iterator-result [, binary-function]);

adjacent_find
iterator ajacent_find (iterator-start, iterator-finish, [, binary-predicate]);

Examples

 use Class::STL::Containers;
 use Class::STL::Algorithms;
 use Class::STL::Utilities;

 # Display all elements in list container ’$list’
 # using unary-function ’myprint’ and algorithm ’for_each’:
 for_each($list->begin(), $list->end(), ptr_fun(’::myprint’));
 sub myprint { print "Data:", @_, "\n"; }

 # Algorithms -- remove_if()
 # Remove element equal to back() -- ie remove last element:
 remove_if($list->begin(), $list->end(), bind1st(equal_to(), $list->back()));

 # Remove all elements that match regular expression ’^fi’:
 remove_if($v->begin(), $v->end(), bind2nd(matches(), ’^fi’));

 # Search for element (’pink’) in tree:
 if (my $f = $tree->find_if($tree->begin(), $tree->end(), bind1st(equal_to(), "pink"))) {
 print "FOUND:", $f->p_element()->data(), "\n";
 } else {
 print "’pink’ NOT FOUND", "\n";
 }

CLASS Class::STL::Utilities

Exports
equal_to, not_equal_to, greater, greater_equal, less, less_equal, compare, bind1st, bind2nd,
mem_fun, ptr_fun, ptr_fun_binary, matches, matches_ic, logical_and, logical_or, multiplies,
divides, plus, minus, modulus.

This module contains various utility function objects. Each object will be constructed automatically when
the function name (eg. ‘equal_to’) is used. Each of the function objects are derived from either
Class::STL::Utilities::FunctionObject::UnaryFunction or
Class::STL::Utilities::FunctionObject::BinaryFunction.

equal_to
Binary predicate. This function-object will return the result of equality between its argument and
the object arg attribute‘s value. The element‘s eq function is used for the comparison.

not_equal_to
Binary predicate. This function is the inverse of equal_to.

greater
Binary predicate. This function-object will return the result of greater-than comparison between its
argument and the object arg attribute‘s value. The element‘s gt function is used for the comparison.

greater_equal

18 January 2007 11:21 13

Class::STL::Containers Programmer’s Reference

Binary predicate. This function-object will return the result of greater-than-or-equal comparison
between its argument and the object arg attribute‘s value. The element‘s ge function is used for the
comparison.

less
Binary predicate. This function-object will return the result of less-than comparison between its
argument and the object arg attribute‘s value. The element‘s lt function is used for the comparison.

less_equal
Binary predicate. This function-object will return the result of less-than-or-equal comparison
between its argument and the object arg attribute‘s value. The element‘s le function is used for the
comparison.

compare
Binary predicate. This function-object will return the result of compare comparison between its
argument and the object arg attribute‘s value. The element‘s cmp function is used for the
comparison.

matches
Binary predicate. This function-object will return the result (true or false) of the regular expression
comparison between its first argument and its second argument which contains a regular expression
string.

matches_ic
Binary predicate. Case-insensitive version of the matches function.

bind1st
Unary function. This function requires two arguments consisting of a binary-function-object and a
element or value argument. It will produce a unary-function object whose function_operator
member will call the binary-function with argument as the first argument.

bind2nd
Unary function. This function requires two arguments consisting of a binary-function-object and a
element or value argument. It will produce a unary-function object whose function_operator
member will call the binary-function with argument as the second argument.

mem_fun
This function requires one argument consisting of the class member function name (string). It will
construct an object whose function_operator member will require an element object to be passed as
the first argument. It will call the elements‘s member function as specified by the mem_fun
argument.

ptr_fun
Unary function. This function requires one argument consisting of a global function name (string).

ptr_fun_binary
Binary function. This function requires one argument consisting of global function name (string).

logical_and
Binary predicate.

logical_or
Binary predicate.

multiplies
Binary function. This function-object will return the result of multiply between its two element
arguments. The element‘s mult function is used for the calculation. It will return a newly construced
element object containing the result.

14 18 January 2007 11:21

Programmer’s Reference Class::STL::Containers

divides
Binary function. This function-object will return the result of division between its two element
arguments. The element‘s div function is used for the calculation. It will return a newly construced
element object containing the result.

plus
Binary function. This function-object will return the result of plus between its two element
arguments. The element‘s add function is used for the calculation. It will return a newly construced
element object containing the result.

minus
Binary function. This function-object will return the result of subtract between its two element
arguments. The element‘s subtract function is used for the calculation. It will return a newly
construced element object containing the result.

modulus.
Binary function. This function-object will return the result of modulus between its two element
arguments. The element‘s mod function is used for the calculation. It will return a newly construced
element object containing the result.

CLASS Class::STL::Iterators
This module contains the iterator classes.

Exports
iterator, bidirectional_iterator, reverse_iterator, forward_iterator, ++, —, ==, !=, >=, <=, +, +=, -, -=,
distance, advance, front_inserter, back_inserter, inserter.

new
p_container

Returns a reference to the container that is associated with the iterator.

p_element
This function will return a reference to the element pointed to by the iterator.

distance
Static function. This function will return the distance between two iterators. Both iterators must be
from the same container. Iterator-finish must be positioned after iterator-first.
int distance (iterator-start, iterator-finish]);

advance
Static function. Moves the iterator forward, or backwards if size is negative.

iterator advance (iterator, size);

inserter
Static function.

iterator inserter (container, iterator);

front_inserter
Static function.

iterator front_inserter (container);

back_inserter

18 January 2007 11:21 15

Class::STL::Containers Programmer’s Reference

Static function.

iterator back_inserter (container);

first
next
last
prev
at_end
eq
ne
lt
le
gt
ge
cmp

Examples

 # Using overoaded inrement operator:
 for (my $i = $p->begin(); !$i->at_end(); $i++)
 {

MyPrint->new()->function_operator($i->p_element());
 }

 # Using overoaded decrement operator:
 for (my $i = $p->end(); !$i->at_end(); --$i)
 {

MyPrint->new()->function_operator($i->p_element());
 }

 # Reverse iterator:
 my $ri = reverse_iterator($p->iter())->first();
 while (!$ri->at_end())
 {
 MyPrint->new()->function_operator($ri->p_element());
 $ri->next();
 }

SEE ALSO
Sourceforge Project Page: http://sourceforge.net/projects/pstl

AUTHOR
m gaffiero, <gaffie@users.sourceforge.net>

COPYRIGHT AND LICENSE
Copyright ©1999-2007, Mario Gaffiero. All Rights Reserved.

This file is part of Class::STL::Containers(TM).

Class::STL::Containers is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; version 2 of the License.

Class::STL::Containers is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Class::STL::Containers;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

16 18 January 2007 11:21

	Table of Contents
	NAME
	SYNOPSIS
	DESCRIPTION
	Containers
	Iterators
	Algorithms
	Utilities
	Differences From C++/STL
	Iterators and the end() function
	The tree Container
	Utilities matches, matches_ic functions
	Container append function
	The clone function
	The Container to_array function
	Container element type

	CLASS Class::STL::ClassMembers
	Data Member Accessor Get/Put Function
	Class members_init() Function
	Class clone() Function
	Class swap() Function
	Class members() Function
	Class members_local() Function
	Class::STL::ClassMembers::DataMember
	Class::STL::ClassMembers::Constructor
	Class::STL::ClassMembers::SingletonConstructor
	Example

	CLASS Class::STL::Containers
	Exports

	CLASS Class::STL::Containers::Abstract
	Extends Class::STL::Element
	new
	clone
	factory
	erase
	insert
	pop
	push
	clear
	begin
	end
	rbegin
	rend
	size
	empty
	to_array
	eq
	ne
	operator +, operator +=
	operator ==
	operator !=

	CLASS Class::STL::Containers::List
	Extends Class::STL::Containers::Deque
	reverse
	sort

	Example

	CLASS Class::STL::Containers::Vector
	Extends Class::STL::Containers::Abstract
	push_back
	pop_back
	back
	front
	at

	CLASS Class::STL::Containers::Deque
	Extends Class::STL::Containers::Vector
	push_front
	pop_front

	CLASS Class::STL::Containers::Queue
	Extends Class::STL::Containers::Abstract
	push
	pop
	back
	front

	CLASS Class::STL::Containers::Stack
	Extends Class::STL::Containers::Abstract
	push
	pop
	top

	CLASS Class::STL::Containers::Tree
	Extends Class::STL::Containers::Deque
	to_array

	Examples

	CLASS Class::STL::Containers::PriorityQueue
	Extends Class::STL::Containers::Vector
	Element Type Class::STL::Element::Priority
	push
	pop
	top
	refresh

	CLASS Class::STL::Algorithms
	Exports
	for_each
	transform
	count
	count_if
	find
	find_if
	copy
	copy_backward
	remove
	remove_if
	remove_copy
	remove_copy_if
	replace
	replace_if
	replace_copy
	replace_copy_if
	generate
	generate_n
	fill
	fill_n
	equal
	reverse
	reverse_copy
	rotate
	rotate_copy
	partition
	stable_partition
	min_element
	max_element
	unique
	unique_copy
	adjacent_find

	Examples

	CLASS Class::STL::Utilities
	Exports
	equal_to
	not_equal_to
	greater
	greater_equal
	less
	less_equal
	compare
	matches
	matches_ic
	bind1st
	bind2nd
	mem_fun
	ptr_fun
	ptr_fun_binary
	logical_and
	logical_or
	multiplies
	divides
	plus
	minus
	modulus.

	CLASS Class::STL::Iterators
	Exports
	new
	p_container
	p_element
	distance
	advance
	inserter
	front_inserter
	back_inserter
	first
	next
	last
	prev
	at_end
	eq
	ne
	lt
	le
	gt
	ge
	cmp

	Examples

	SEE ALSO
	AUTHOR
	COPYRIGHT AND LICENSE

